從概念驗(yàn)證到產(chǎn)品:壓電MEMS超聲波換能器設(shè)計(jì)
發(fā)布時(shí)間:2019-01-02 責(zé)任編輯:wenwei
【導(dǎo)讀】麥姆斯咨詢:本文為OnScale與Mentor合作推出,由行業(yè)專家撰寫,文章詳細(xì)介紹了壓電MEMS超聲波換能器產(chǎn)品的設(shè)計(jì)過程,包括傳感器的仿真、設(shè)計(jì)以及它與整個(gè)系統(tǒng)的集成。
了解系統(tǒng)
我們正在開發(fā)一種槽罐液位監(jiān)測系統(tǒng)。該系統(tǒng)可以安裝在啤酒廠、釀酒廠和其他飲料廠的物聯(lián)網(wǎng)邊緣設(shè)備中,用以收集液位的狀態(tài),并可主動(dòng)通知技術(shù)人員是否存在任何問題(例如泄漏)。我們對系統(tǒng)進(jìn)行了改良(圖1),利用壓電MEMS超聲波換能器(PMUT)來監(jiān)測水箱中的液位,并定期將測量結(jié)果上傳到網(wǎng)關(guān)設(shè)備中。
圖1:槽罐液位監(jiān)測系統(tǒng)框圖
壓電MEMS超聲波換能器在罐體中發(fā)射超聲波,然后測量被液體表面反射的波,從而得到一個(gè)很小的模擬機(jī)械波(需要放大)。發(fā)射波與反射波之間的時(shí)間差與液體的距離成正比。模擬前端(AFE)將MEMS波形放大并將信號(hào)轉(zhuǎn)換為表示飛行時(shí)間(或液體深度兩倍)的積分電壓。模數(shù)轉(zhuǎn)換器(ADC)將該電壓轉(zhuǎn)換成數(shù)字信號(hào),以作為運(yùn)行軟件的微控制器的輸入。時(shí)鐘、PLL和振蕩器電路是數(shù)字電路的支持模塊,偏置電流發(fā)生器、電壓調(diào)節(jié)器和帶隙基準(zhǔn)是模擬電路的支持模塊。射頻(RF)發(fā)送器將數(shù)據(jù)發(fā)送到網(wǎng)關(guān)。Arm Cortex-M3微控制器與模擬電路和RF發(fā)送器相連。如果將來我們計(jì)劃增加溫度傳感器,還需要多路復(fù)用器,但對于本白皮書,我們不考慮這兩個(gè)元素。
了解傳感器
據(jù)麥姆斯咨詢介紹,超聲波換能器使用超聲波來探測傳感器與其他物體之間的距離。它們能夠?qū)㈦娔苻D(zhuǎn)換為機(jī)械能,并且在大多數(shù)情況下,還能將機(jī)械能轉(zhuǎn)換回電能。正是這種功能的二元性使得超聲波換能器可以向物體或界面發(fā)射壓力波,并可以在這些波被反射回源時(shí)探測它們。雖然在日常生活中有著廣泛的應(yīng)用,但與其它競爭技術(shù)相比,傳統(tǒng)的超聲波換能器更笨重、更耗電、更昂貴。這限制了它們的應(yīng)用,特別是在消費(fèi)領(lǐng)域,但這種情況由于MEMS技術(shù)的應(yīng)用而正在快速改變。
即將上市的新一代小型化超聲波換能器的功耗比前代產(chǎn)品低了一個(gè)數(shù)量級(jí)。沒有什么比當(dāng)前我們開發(fā)并實(shí)施在系統(tǒng)中的PMUT更合適的例子了。PMUT由一個(gè)懸浮在腔體上的壓電薄膜組成,壓電薄膜通常為鋯鈦酸鋅(PZT)或氮化鋁(AlN)材料。當(dāng)在膜上施加電脈沖時(shí),膜會(huì)振動(dòng)并直接在它接觸的介質(zhì)中產(chǎn)生聲波。當(dāng)設(shè)計(jì)剛好為共振頻率時(shí),PMUT可以用非常小的功率產(chǎn)生大量的能量。圖2顯示了PMUT橫截面示意圖,可以通過調(diào)整膜厚度和直徑大小來優(yōu)化給定介質(zhì)的共振頻率。PMUT可以使用成熟的硅基半導(dǎo)體制造工藝來生產(chǎn)。因而與許多競爭技術(shù)相比,它們可以適用于低成本的大批量應(yīng)用,更重要的是,它們還可以與CMOS無縫集成,從而在一顆芯片上實(shí)現(xiàn)完整的傳感系統(tǒng)。
圖2:PMUT換能器的橫截面示意圖(來源:OnScale)
使用有限元分析進(jìn)行PMUT仿真
PMUT設(shè)計(jì)的第一步,我們使用被稱作“有限元分析(FEA)”的技術(shù)來進(jìn)行PMUT仿真。通過有限元分析,可以將描述結(jié)構(gòu)行為的復(fù)雜的微分方程轉(zhuǎn)換為代數(shù)表達(dá)式,以簡化成數(shù)值求解。在設(shè)計(jì)中我們可以采用多種FEA方法:用于探索設(shè)計(jì)概念、執(zhí)行設(shè)計(jì)性能的功能驗(yàn)證,以及優(yōu)化設(shè)計(jì)。FEA可以探究真實(shí)世界里非理想幾何形狀、制造加工和材料屬性的變化,非常適合處理邊界條件復(fù)雜的問題。
FEA工具依賴于將仿真結(jié)構(gòu)劃分為低階有限元或網(wǎng)格來近似求解。此過程通過自動(dòng)網(wǎng)格函數(shù)的輔助,可有效地對結(jié)構(gòu)進(jìn)行分區(qū)。在需要的地方進(jìn)行網(wǎng)格細(xì)化,設(shè)計(jì)人員可以獲得一組精確的仿真結(jié)果。通過將網(wǎng)格與來自電、機(jī)械和熱域的其他信息相結(jié)合,耦合的場模塊可用于同時(shí)求解靜電、耦合電機(jī)械學(xué)、壓電、壓阻、阻尼效應(yīng)和其他特性。
可以為超聲波換能器仿真許多重要的器件特性,包括:
• 電阻抗
• 振型
• 壓力和位移水平
• 波束圖形
• 指向性指數(shù)
• 效率
• 脈沖回波響應(yīng)
• 串?dāng)_
• 帶寬
• 材料特性
• 機(jī)械沖擊
• 粘合效應(yīng)
我們此次設(shè)計(jì)使用的多物理FEA工具為OnScale。OnScale功能強(qiáng)大且支持云技術(shù),它不僅提供上述所有功能,并且可在云計(jì)算基礎(chǔ)架構(gòu)上大規(guī)模并行處理它們,將設(shè)計(jì)研究從幾周縮短到幾小時(shí)內(nèi)完成。當(dāng)然COMSOL、ANSYS也可以勝任。
設(shè)計(jì)傳感器
使用諸如FEA的仿真技術(shù),在對壓電MEMS超聲波換能器的特性仿真時(shí),需要解決一系列獨(dú)特的挑戰(zhàn)。最基本的挑戰(zhàn)之一是確定所需計(jì)算域的相對大小。要精確地捕捉波傳播時(shí)所產(chǎn)生的應(yīng)力在小空間的梯度,就得在長路徑(例如10-250波長)上部署精細(xì)網(wǎng)格(例如每波長8-12個(gè)單元)。結(jié)果將產(chǎn)生高效仿真網(wǎng)格所需的大量單元。OnScale具有高效的求解器和先進(jìn)的混合網(wǎng)格技術(shù),因而非常適合這種尺寸的模型。
本文設(shè)計(jì)的PMUT的單個(gè)換能器3D建模結(jié)構(gòu)如下:標(biāo)稱腔寬度為400μm、頂部電極直徑為200μm,空腔深度為40μm。PMUT的激發(fā)是通過施加在膜頂部電極上的一系列電壓脈沖。圖3顯示了當(dāng)脈沖為32V時(shí)膜的形變程度。為了看得更清楚,形變有所夸大。
圖3:電刺激期間PMUT膜的形變(來源:OnScale)
為了優(yōu)化本設(shè)計(jì),我們需要最大化PMUT接收到的從液體表面反射回的機(jī)械能量。我們需要構(gòu)建一個(gè)實(shí)驗(yàn)設(shè)計(jì)(DoE),可以覆蓋足夠的設(shè)計(jì)空間以包含我們的最佳解決方案。具體而言,我們通過改變設(shè)計(jì)參數(shù)(如表1)以確定最佳設(shè)計(jì)。
表1:PMUT優(yōu)化之參數(shù)掃描
壓電層厚度和膜厚度均以0.1μm的步長從1.0μm掃描至2.5μm,總共產(chǎn)生256個(gè)設(shè)計(jì)仿真結(jié)果。圖4顯示了結(jié)果的一個(gè)子集,其中共振頻率與掃描參數(shù)相對應(yīng)。在原型設(shè)計(jì)之前,這些結(jié)果為我們給定的環(huán)境條件提供了設(shè)計(jì)的最佳尺寸。在這種情況下,仿真結(jié)果表明,由于空氣損耗,反射波的能量在較低頻率下是最佳的。我們選擇壓電層厚度為1.2μm和膜厚度為1.2μm,在該條件下可產(chǎn)生122kHz的低諧振頻率,同時(shí)保持在制造工藝能力所限制的范圍內(nèi)。使用傳統(tǒng)的FEA軟件工具難以探索這種尺寸的設(shè)計(jì)空間,這也是我們這次選擇OnScale進(jìn)行分析的原因之一。
圖4:PMUT優(yōu)化之諧振頻率(來源:OnScale)
設(shè)計(jì)模擬前端
圖5顯示了此設(shè)計(jì)的模擬前端。在S-Edit中捕獲PMUT的原理圖,其使用的電壓源的屬性和參數(shù)與FEA研究的輸出相匹配。
圖5:PMUT換能器的模擬前端
當(dāng)微控制器設(shè)置SR鎖存器時(shí),飛行時(shí)間(ToF)功能啟動(dòng),SR鎖存器開始在采樣保持積分器上累積電荷。同時(shí),微控制器按PMUT設(shè)計(jì)的諧振頻率產(chǎn)生一系列脈沖(122kHz)。因?yàn)楹诵碾娫措妷簽?.5V,而根據(jù)PMUT的要求必須升高至32V,所以使用電荷泵DC-DC轉(zhuǎn)換器和數(shù)字電平轉(zhuǎn)換器將脈沖放大至32V。換能器接收到信號(hào)脈沖,在罐體中產(chǎn)生壓力波,并在液體界面處反射回來(圖6)。
PMUT探測到該反射波后,在膜上產(chǎn)生峰值幅度約為500μV的電壓信號(hào),該信號(hào)的延遲時(shí)間取決于壓力波傳播到液位頂部所需的時(shí)間和反射回PMUT的時(shí)間。
圖6:罐內(nèi)波傳播仿真(來源:OnScale)
設(shè)計(jì)選用的儀表放大器的增益為70dB,放大器將PMUT信號(hào)放大并將其反饋至施密特觸發(fā)器。施密特觸發(fā)器內(nèi)置有遲滯功能,當(dāng)放大的反射信號(hào)上升到閾值電壓(VREF)1.25V以上時(shí),會(huì)將SR鎖存器復(fù)位。鎖存器復(fù)位時(shí)還會(huì)鎖定采樣保持積分器,在壓力波穿過罐體中的空氣層并返回到PMUT所需的時(shí)間內(nèi),該采樣保持積分器已在其輸出電容器上累積了電荷。在微控制器之前的ADC會(huì)將積分器的輸出電壓轉(zhuǎn)換成到數(shù)字信號(hào),該數(shù)值與飛行時(shí)間線性相關(guān),并且可通過減法來計(jì)算罐內(nèi)的液位。
執(zhí)行初始系統(tǒng)仿真
啟動(dòng)仿真時(shí),S-Edit先創(chuàng)建完整的Verilog-AMS網(wǎng)表并將其傳遞給T-Spice。T-Spice自動(dòng)添加模擬/數(shù)字連接模塊,然后對設(shè)計(jì)進(jìn)行分區(qū)仿真。T-Spice對SPICE和Verilog-A進(jìn)行模擬仿真并將RTL發(fā)送到ModelSim進(jìn)行數(shù)字仿真。兩個(gè)仿真器都能自動(dòng)調(diào)用,并且在仿真過程中,只要模擬/數(shù)字邊界發(fā)生信號(hào)變化,信號(hào)值就會(huì)在仿真器之間來回傳遞。這意味著,無論設(shè)計(jì)使用何種語言,設(shè)計(jì)人員都可以從S-Edit驅(qū)動(dòng)仿真,并且設(shè)計(jì)會(huì)在仿真器之間自動(dòng)分區(qū)。然后,設(shè)計(jì)人員可以使用ModelSim和T-Spice波形查看器進(jìn)行結(jié)果交互。圖7顯示了仿真的結(jié)果。
圖7:初始系統(tǒng)仿真結(jié)果
第一個(gè)綠色波形顯示為頻率在122kHz的高壓脈沖。接下來,PMUT響應(yīng)大約發(fā)生在初始脈沖后1.2ms,紅色波形顯示其在儀表放大器的輸入。假設(shè)空氣中的聲速為343m/s,這相當(dāng)于液位在低于滿位的21cm處。第三個(gè)紫色波形顯示為SR鎖存器的輸出,當(dāng)PMUT輸出電壓超過400μV(放大之前)時(shí)被觸發(fā)。最后藍(lán)色波形顯示為積分器的輸出,輸出先隨電壓的線性增加,直到SR鎖存器觸發(fā)使積分器保持。通過8位ADC將輸出轉(zhuǎn)換為數(shù)字信號(hào),然后發(fā)送到微控制器計(jì)算液位。對于此設(shè)計(jì),假定罐體總深度為2.1m。然后可以計(jì)算出最大的飛行時(shí)間為12.2ms,隨后對應(yīng)產(chǎn)生積分器輸出為2.17V。這與設(shè)計(jì)所選ADC的最大輸入電壓(2.2V)接近。對于不同尺寸的儲(chǔ)存容器,儀表放大器的增益可以相應(yīng)調(diào)整。
開發(fā)軟件
在微控制器上運(yùn)行軟件,包括代碼,并周期性地將傳感器的輸出轉(zhuǎn)換為液體深度,并向監(jiān)控系統(tǒng)報(bào)告任何顯著的液位變化。假設(shè)積分器和ADC近似線性相關(guān),則可以使用線性斜率和截距將ADC的輸出轉(zhuǎn)換為時(shí)間。這些值先仿真,然后通過測量模擬仿真結(jié)果進(jìn)行驗(yàn)證。用飛行時(shí)間乘以空氣中的聲速(343m/s)可轉(zhuǎn)換為空氣的高度。最后,液位即為總罐體深度減去空氣的高度。
執(zhí)行實(shí)際的系統(tǒng)仿真
因?yàn)槲覀円呀?jīng)驗(yàn)證了MEMS換能器,并且我們希望能顯著節(jié)省仿真時(shí)間,我們使用Verilog行為模型來替代傳感器(圖8),該模型使用離散的仿真時(shí)間代替連續(xù)模擬采樣來進(jìn)行數(shù)據(jù)采樣。
圖8:PMUT仿真替代模型
該模型與模擬傳感器行為非常匹配,為了更快地系統(tǒng)仿真,每隔1μs進(jìn)行數(shù)據(jù)采樣,盡管ADC每次轉(zhuǎn)換需要12μs。圖9顯示了系統(tǒng)的仿真結(jié)果。記錄欄(A)顯示液位變化警告,波形(B)顯示與泄漏對應(yīng)的液位和聲傳感器值。系統(tǒng)大部分仿真時(shí)間處于休眠狀態(tài),定期醒來獲取深度讀數(shù)(C)。
圖9:系統(tǒng)仿真結(jié)果
下一步
接下來的步驟就是完善系統(tǒng)為其充實(shí)模擬部分,比如添加RF收發(fā)器、通信模塊和設(shè)備ID以便連接到Internet。另外,為系統(tǒng)和Web開發(fā)復(fù)雜的軟件,以拓展更多的可能性,包括潛在的:雙向通信(指導(dǎo)系統(tǒng)行動(dòng))、無線軟件更新、預(yù)防性維護(hù)和云服務(wù)。我們也可以更進(jìn)一步,為系統(tǒng)添加溫度傳感器,以更好地校準(zhǔn)測量結(jié)果。
推薦閱讀:
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測試庫獲得德國萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長的IO-Link市場
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 讓汽車LED照明無死角,LED驅(qū)動(dòng)的全面進(jìn)化
- 開關(guān)模式電源問題分析及其糾正措施:晶體管時(shí)序和自舉電容問題
- 熱電偶的測溫原理
- 【泰克先進(jìn)半導(dǎo)體實(shí)驗(yàn)室】 遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
- ADALM2000實(shí)驗(yàn):變壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
SPANSION
SRAM
SSD
ST
ST-ERICSSON
Sunlord
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
TE
Tektronix
Thunderbolt
TI
TOREX
TTI
TVS
UPS電源
USB3.0
USB 3.0主控芯片
USB傳輸速度
usb存儲(chǔ)器
USB連接器
VGA連接器
Vishay
WCDMA功放
WCDMA基帶
Wi-Fi