你的位置:首頁 > 互連技術 > 正文

NB-LTE與NB-CIoT誰更能討得5G的歡心?

發(fā)布時間:2016-09-20 責任編輯:wenwei

【導讀】物聯(lián)網(wǎng)已發(fā)展多年,各式的應用及技術都相繼被提出,如LoRa和SIGFOX,也都強調(diào)低功耗以及廣大覆蓋率的需求,但由于LoRa及SIGFOX使用非授權頻譜,因此代表不管任何人皆可使用此頻段,也形成許多不可控制的干擾問題……
 
現(xiàn)今無線通訊發(fā)展飛快,全球無線通訊,發(fā)展得如火如荼,人們對于行動通訊、影音傳輸或終端應用的需求日與俱增,所到之處網(wǎng)路無所不在,因此即便4G還在持續(xù)擴展布建時,5G的時代也宣告即將到來,當中所含的商機更是無限。
 
為了迎接這龐大的通訊藍海,各國無不積極地要搶先一步占得先機,紛紛投入許多資源及研究,對于下一代5G通訊進行規(guī)劃和開發(fā),想掌握其中的關鍵技術及專利,以提高被第三代合作伙伴計劃(3rd Generation Partnership Project, 3GPP)標準采納的機會,俾助國內(nèi)通訊相關產(chǎn)業(yè)未來的發(fā)展。
 
5G通訊性能大耀進
 
在產(chǎn)業(yè)發(fā)展迅速的情況下,用戶端的各樣應用也隨之增加,在面對全球用戶對于數(shù)據(jù)傳輸與網(wǎng)路容量需求越來越高的狀況下,5G網(wǎng)路便因應而生,3GPP的5G相關的標準技術預計將在2016定案,在2020年預估相關產(chǎn)品將可步入商用階段。在其未來發(fā)展,不僅需要大的傳輸速率,并且還要比現(xiàn)今大以數(shù)倍的連結數(shù),全球將走入萬物皆聯(lián)網(wǎng)的時代(圖1)。
 
NB-LTE與NB-CIoT誰更能討得5G的歡心?
圖1 5G發(fā)展趨勢
 
知名咨詢機構麥肯錫指出,2025年物聯(lián)網(wǎng)(IoT)的應用產(chǎn)值將達到11.1兆美元,5G提出低延遲、高傳輸、低耗能、大連結等特性,5G行動通訊預計在2020年全球將有500億個終端產(chǎn)品具備上網(wǎng)功能,整體系統(tǒng)容量(Capacity)需求也較4G增加1000倍以上,并且其傳輸延遲必須小于1毫秒(ms),因此下一代5G通訊的效能提升及技術挑戰(zhàn)勢必比先前更加嚴峻。
 
隨著智慧電表、智慧家電、智慧工廠、可穿載設備這些應用型終端的大量出現(xiàn),越來越多的工作和生活都須要透過智慧終端來解決,對此,高密度的連結及降低終端成本需求變得越來越大,必要有新的技術來因應這樣的需求。
 
5G關鍵技術剖析
 
在5G未來發(fā)展,不僅需要大的傳輸速率,并且還要比現(xiàn)今大以數(shù)倍的連結數(shù),全球將走入萬物皆聯(lián)網(wǎng)的時代,在3GPP首先提出機器對機器(M2M)/機器類型通訊( Machine Type Communication, MTC),其設計的目標主要有更低的設備成本、更低的功耗、更大的覆蓋率和支援大量的設備連線,但外界多數(shù)認為這只是一個過渡階段的版本,因為其功耗和建置成本還是過高,對于需要更低功耗及更大量的連結數(shù)的應用來說,其還是不夠為一可使用的技術,因此3GPP在R13提出一種更低傳輸資料量,更低的設備成本、更廣覆蓋率的技術,稱做NB-IoT(Narrowband-Internet of Thing),其最大的傳輸資料量為200kbit/s,頻寬也降至200kHz,并且其覆蓋率可在提升數(shù)倍,因此各主流電信營運商無不極力支持此技術(表1)。
 
NB-LTE與NB-CIoT誰更能討得5G的歡心?
 
NB-IoT搶進物聯(lián)網(wǎng)藍海
 
物聯(lián)網(wǎng)已發(fā)展多年,各式的應用及技術都相繼被提出,如LoRa和SIGFOX,也都強調(diào)低功耗以及廣大覆蓋率的需求,但由于LoRa及SIGFOX使用非授權頻譜,因此代表不管任何人皆可使用此頻段,也形成許多不可控制的干擾問題,這變成在使用上非常不可靠,因此全球各大電信營運商傾向支持3GPP所提出之NB-IoT的技術,由于其使用授權頻段,并且可以在原本的蜂巢式網(wǎng)路設備上快速部署NB-IoT的建置,對營運商而言便可以節(jié)省布建成本及快速整合原有長程演進計畫(LTE)網(wǎng)路,因此可以預見未來NB -IoT將為全球主流電信商所推行的方向。
 
NB-IoT為一低功耗廣域網(wǎng)路(Low Power Wide Area,LPWA)的技術,其特點便是極低的功耗和廣大的覆蓋率及龐大的連結數(shù),其裝置覆蓋范圍可以提升20dB,并且電池壽命可以超過10年以上,每個NB-IoT載波最多可支援二十萬個連結,而且根據(jù)容量需求,可以透過增加更多載波來擴大規(guī)模,使單一基地臺便能支援數(shù)百萬個物聯(lián)網(wǎng)連結。
 
在NB-IoT的設計上有幾項目標,一為提升涵蓋率,可以藉由降低編碼率(Coding Rate)來提升訊號的可靠性,進而使訊號強度微弱時,依舊能夠正確解調(diào),達到提高覆蓋率的目的,另外為要大幅提升電池使用周期,其發(fā)送的能量最大為23dBm,約為200毫瓦(mW),還有為降低終端的復雜度,因此其調(diào)變上使用恒定包絡(Constant Envelope)的方式,可以使功率放大器(Power Amplifier, PA)運作于飽和區(qū)間,讓傳送端有更好的使用效率,在實體層設計上,也可以簡化部分元件,使復雜度降低,還有為減少系統(tǒng)頻寬,其頻寬設計在200kHz,因為在物聯(lián)網(wǎng)上不需要這么高的傳輸速率,所以便不需要這么大的頻譜,在使用上也能夠更彈性地分配,而還有一個重要設計目標就是要大幅的提升系統(tǒng)容量,使得大量的終端能夠同時連結,其中一種方法為可以使子載波區(qū)間更小,使得在頻譜資源分配上能夠更加的彈性,切出更多子載波分配給更多的終端。
 
NB-IoT在頻譜上有三種布建方式,第一種為單獨布建(Standalone),此種布建方式為使用獨立或全球行動通訊系統(tǒng)(GSM)的頻譜,彼此不會互相干擾,是最單純的布建方式,但需要一段自己的頻譜。第二種是使用保護頻段(Guard Band)來布建,利用LTE頻譜邊緣保護頻段,訊號強度較弱的部分布建,優(yōu)點是不需要一段自己的頻譜,缺點是可能發(fā)生與LTE系統(tǒng)干擾問題。
 
而第三種是在現(xiàn)行運作頻段內(nèi)布建(In Band),部署情境如圖2所示,在使用的頻譜則選擇在低頻段上,像是700MHz、800MHz、900MHz等,因為在低頻段能有更廣的覆蓋率,并且有較好的傳波特性,對于室內(nèi)環(huán)境可以有更深的滲透率。
 
NB-LTE與NB-CIoT誰更能討得5G的歡心?
圖2 NB-IoT三種部署情境圖片來源:NB-IoT enabling new business opportunities, 華為
 
然而,目前3GPP所提出之NB-IoT也包含各項不同的技術,目前主要可分為兩個方向,一為由諾基亞(Nokia)、愛利信(Ericsson)和英特爾(Intel)等陣營支持的NB -LTE(Narrowband-LTE)以及華為和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),兩種技術對于營運商最大的差別在于其可以在現(xiàn)有的LTE環(huán)境中,有多少可以重新使用于物聯(lián)網(wǎng)的應用中。
 
在NB-LTE幾乎可與目前現(xiàn)行的LTE設備相容,但NB-CIoT可說是一個重新設計的技術,須要建構新的晶片,但在其涵蓋率可望更加地提升,設備成本也更為降低,因此兩個技術可說各有千秋,下面將對兩個技術做一概述。
 
NB-LTE向后兼容降成本
 
在NB-LTE使用的頻寬為200KHz,在下行使用的是正交分頻多工存取(Orthogonal Frequency Division Multiple Access,OFDMA)的技術,子載波頻寬為15kHz,而在正交頻分多工(OFDM)符元(Symbol)以及時隙(Time Slot)和子訊框(Subframe)的區(qū)間,與原有的LTE規(guī)范相同。
 
NB-IoT上行使用的是單載波分頻多重存取(Single-carrier Frequency-Division Multiple Access, SC-FDMA),子載波頻寬為2.5kHz,是原本LTE子載波頻寬的六分之一,而在符元以及時隙和子封包的區(qū)間為原有LTE的六倍。NB-LTE最主要希望能夠使用舊有的LTE實體層部分,并且有相當大的程度能夠使用上層的LTE網(wǎng)路,使得營運商在布建時能夠減少設備升級的成本,在建置上也能夠沿用原有的蜂巢網(wǎng)路架構,達到快速布建的目的。
 
以下行部分來看,在同步訊號(PSS/SSS)、實體廣播通道(PBCH)及實體下行控制通道(PDCCH)等須要去做調(diào)整或重新設計,并且在原來一些控制通道,如實體控制格式指示通道(PCFICH)和實體混合自動重傳請求指示通道(PHICH),則省略去給資料做傳送。而在NB-LTE中,為了將頻寬縮減至200kHz,為原本LTE最小頻寬1.4MHz的六分之一,因此將傳送的時間周期拉長,所以在NB-LTE定義一種新的時間單位,稱作M-subframe,其為原有LTE系統(tǒng)連續(xù)六個Subframe所構成,因此其時間長度為6毫秒,而六個M-subframe構成一個M-frame(圖3),在一個M-subframe,最小的調(diào)度單位為一個實體層無線資源區(qū)塊(Physical Resource Block,PRB),代表一個M-subframe中最多能夠支援六個終端。
 
NB-LTE與NB-CIoT誰更能討得5G的歡心?
圖3 NB-LTE下行封包設計圖片來源:3GPP TR 45.820
 
在上行部分,使用的是SC-FDMA,終端能夠彈性的使用各個單載波資源,在NB-IoT的應用上,接收端必須要能夠容忍非常弱的訊號,而且時間延遲可能會很大,由于每個終端要與基地臺做時間的對齊,其時間的誤差要小于循環(huán)字首(Cyclic Prefix,CP),所以在CP的設計上必須要更加地拉長,因此在子載波頻寬的設計上為原來的六分之一,到2.5kHz,這么做也可以使終端設備在頻譜上做更彈性的配置。
 
NB-CIoT新設計大應用
 
在NB-CIoT中,下行使用的是OFDMA,與以往的LTE系統(tǒng)不同,NB-CIoT使用四十八個頻寬為3.75 kHz的子載波,并使用六十四點的快速傅立葉轉換(FFT),其取樣頻率240kHz,也與舊有的LTE系統(tǒng)不同。在時間單位上,NB-CIoT一個封包由八個子封包組成,而在每個子封包可在分為三十二個時隙,每個時隙又分為十七個符元(圖4)。
 
NB-LTE與NB-CIoT誰更能討得5G的歡心?
圖4 NB-CIoT下行封包設計圖片來源:3GPP TR 45.820
 
其在各個訊號通道也重新設計,如同步訊號(PSS/SSS),雖也像LTE系統(tǒng)使用固定振幅(Constant Amplitude)的ZC序列(Zadoff-Chu Sequence),但其會復制兩次傳送,為的是增加偵測的可靠度,而在實體下行分享通道(PDSCH)原本使用渦輪碼(Turbo Coding)的編碼,也改為適合小資料傳輸?shù)木矸e編碼(Convolution Coding),可更加簡化系統(tǒng)架構及復雜度,提高系統(tǒng)應對物聯(lián)網(wǎng)需求的能力。
 
在上行部分,采用的是分頻多重存取(Frequency Division Multiple Access,FDMA)系統(tǒng),與OFDM系統(tǒng)相比,每個子載波間不需要正交,因此并不需要精確的時間及頻率校準,而在頻率使用上,NB-CIoT使用三十六個5kHz頻寬的子載波,而其支援GMSK(Gaussian-shaped Minimum Shift Keying)的調(diào)變,GMSK為恒定包絡的調(diào)變并且有PSK(Phase Shift Keying)的特性,可提供較高的頻譜效益,并且可以使PA運作在飽和區(qū)間,得到更有效率的表現(xiàn)。
 
可以發(fā)現(xiàn)在NB-CIoT在整體設計上和以往LTE系統(tǒng)有非常大的不同,不僅在封包時間的架構上,在各個使用的通道也重新設計,因此對于營運商來說,必須要重新設計晶片模組,對于成本及建置的速度上便是一大需要顧及的地方。
 
NB-LTE與NB-CIoT各有千秋
 
NB-LTE與NB-CIoT各項技術的比較如表2所示,在NB-LTE中,大部分與原有LTE系統(tǒng)相同,如使用的接取技術和FFT與取樣頻率的大小等,但NB -CIoT,卻是截然不同的設計規(guī)格。
 
NB-LTE與NB-CIoT誰更能討得5G的歡心?
 
對于營運商來說,NB-LTE能夠與舊有的系統(tǒng)直接套用,無須耗費太大的成本,并且能夠快速度布建在原有的蜂巢式網(wǎng)路基站中,而NB-CIoT中,不論在封包設計、取樣頻率或子載波頻寬大小上,都與原本LTE不同,但正由于其是專為物聯(lián)網(wǎng)所重新設計的規(guī)格,因此它在各樣應用于物聯(lián)網(wǎng)的特性上,會比NB- LTE更加地適合,如在取樣頻率上,NB-LTE依舊是1.92MHz,這在設備的成本上依舊會是一大考量,而NB-CIoT的取樣頻率就降至240kHz,便可以大幅降低設備成本以及耗電量。
 
NB-CIoT的CP也較NB-LTE更加地長,便更能夠抵抗時間的延遲,使傳輸距離可以更遠,所以NB-LTE與NB-CIoT都各有不同的優(yōu)勢與劣勢,因此最后定案的技術與運作模式可能要等到3GPP所訂出之標準規(guī)范后才能明朗化。
 
最終的NB-IoT的版本可能是這兩個版本中選擇一個,或是兩個技術盡量融合成一個版本,但有幾項技術原則必須要存在,包括:NB-IoT要同時支援Standalone、Guard Band及In Band的三種布建方式;使用180kHz的頻寬;在下行鏈路使用OFDMA的系統(tǒng);在上鏈使用GMSK或SC-FDMA系統(tǒng);在L2以上的技術與通信規(guī)范,要盡量與原有LTE系統(tǒng)重用。
 
NB-IoT勢在必行
 
在未來進入萬物聯(lián)網(wǎng)的時代,各種后端應用相繼產(chǎn)生,因此要如何使這些應用徹底地實現(xiàn),以及營運商要如何在這當中分得其中一塊大餅,NB-IoT無疑是一個必要推行的技術,由于如SIGFOX或LoRa,其使用免授權頻段,對于資料可靠性和安全性是一大考量,重要的是營運商如何在其中獲取利益也是須要考量的部分,而NB-IoT由既有的LTE網(wǎng)路架構,再更新其部分設備元件,便能夠快速地打入物聯(lián)網(wǎng)市場,對于未來一日千里的通訊發(fā)展及需求,建置及部署的速度無疑是非常關鍵的考量,并且其使用的是授權頻段,對于資料的安全性及可靠度便大大的提升,且可以減少許多不必要的干擾問題,在今年(2016)的年中預計會定出一版NB-IoT的標準規(guī)范,屆時便能夠看見將來的窄頻物聯(lián)網(wǎng)的發(fā)展。
 
 
 
推薦閱讀:


相移時延如何改善DC/DC轉換器性能?
何為精密電阻,應該選擇何種技術的精密電阻?
由來已久的ToF技術真的不可取代?
噪聲環(huán)境中如何減少或濾除偶發(fā)錯誤測量值?
MOSFET靠什么進軍IGBT的應用領域?

 
 
要采購DC轉換器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
共模電感 固態(tài)盤 固體繼電器 光傳感器 光電池 光電傳感器 光電二極管 光電開關 光電模塊 光電耦合器 光電器件 光電顯示 光繼電器 光控可控硅 光敏電阻 光敏器件 光敏三極管 光收發(fā)器 光通訊器件 光纖連接器 軌道交通 國防航空 過流保護器 過熱保護 過壓保護 焊接設備 焊錫焊膏 恒溫振蕩器 恒壓變壓器 恒壓穩(wěn)壓器
?

關閉

?

關閉