如何解決傳統(tǒng)二極管整流問題?詳解開關(guān)電源同步整流技術(shù)
發(fā)布時(shí)間:2019-12-13 責(zé)任編輯:lina
【導(dǎo)讀】近年來,電子技術(shù)的發(fā)展,使得電路的工作電壓越來越低、電流越來越大。低電壓工作有利于降低電路的整體功率消耗,但也給電源設(shè)計(jì)提出了新的難題。
傳統(tǒng)二極管整流問題
近年來,電子技術(shù)的發(fā)展,使得電路的工作電壓越來越低、電流越來越大。低電壓工作有利于降低電路的整體功率消耗,但也給電源設(shè)計(jì)提出了新的難題。
開關(guān)電源的損耗主要由3部分組成:功率開關(guān)管的損耗,高頻變壓器的損耗,輸出端整流管的損耗。在低電壓、大電流輸出的情況下,整流二極管的導(dǎo)通壓降較高,輸出端整流管的損耗尤為突出??旎謴?fù)二極管(FRD)或超快恢復(fù)二極管(SRD)可達(dá)1.0~1.2V,即使采用低壓降的肖特基二極管(SBD),也會(huì)產(chǎn)生大約0.6V的壓降,這就導(dǎo)致整流損耗增大,電源效率降低。
問題舉例
但設(shè)采用3.3V甚至1.8V或1.5V的供電電壓,所消耗的電流可達(dá)20A。此時(shí)超快恢復(fù)二極管的整流損耗已接近甚至超過電源輸出功率的50%。即使采用肖特基二極管,整流管上的損耗也會(huì)達(dá)到(18%~40%)PO,占電源總損耗的60%以上。因此,傳統(tǒng)的二極管整流電路已無法滿足實(shí)現(xiàn)低電壓、大電流開關(guān)電源高效率及小體積的需要,成為制約DC/DC變換器提高效率的瓶頸。
同步整流技術(shù)引言
在電源轉(zhuǎn)換領(lǐng)域,輸出直流電壓不高的隔離式轉(zhuǎn)換器都使用 MOSFET作為整流器件。由於這些器件上的導(dǎo)通損耗較小,能夠提高效率因而應(yīng)用越來越廣泛;
為了這種電路能夠正常運(yùn)作,必須對同步整流器(SR)加以控制,這是基本的要求。同步整流器是用來取代二極管的,所以必須選擇適當(dāng)?shù)姆椒?,按照二極管的工作規(guī)律來驅(qū)動(dòng)同步整流器。驅(qū)動(dòng)信號(hào)必須用PWM控制信號(hào)來形成,而PWM控制信號(hào)決定著開關(guān)型電路的不同狀態(tài)。
同步整流器件的特點(diǎn)
同步整流技術(shù)就是采用低導(dǎo)通電阻的功率MOS管代替開關(guān)變換器快恢復(fù)二極管,起整流管的作用,從而達(dá)到降低整流損耗,提高效率的目的。通常,變換器的主開關(guān)管也采用功率MOS管,但是二者還是有一些差異的。
功率MOS管實(shí)際上是一個(gè)雙向?qū)щ娖骷?,由于工作原理的不同,而?dǎo)致了其他一些方面的差異。例如:作為主開關(guān)的MOS管通常都是硬開關(guān),因此要求開關(guān)速度快,以減小開關(guān)損耗;而作為整流/續(xù)流用的同步MOS管,則要求MOS管具有低導(dǎo)通電阻、體二極管反向恢復(fù)電荷小、柵極電阻小和開關(guān)特性好等特點(diǎn),因此,雖然兩者都是MOS管,但是它們的工作特性和損耗機(jī)理并不一樣,對它們的性能參數(shù)要求也不一樣,認(rèn)識(shí)這一點(diǎn),對于如何正確選用MOS管是有益的。
同步整流的基本電路結(jié)構(gòu)
同步整流是采用通態(tài)電阻極低的專用功率MOSFET,來取代整流二極管以降低整流損耗的一項(xiàng)新技術(shù)。它能大大提高DC/DC變換器的效率并且不存在由肖特基勢壘電壓而造成的死區(qū)電壓。功率MOSFET屬于電壓控制型器件,它在導(dǎo)通時(shí)的伏安特性呈線性關(guān)系。用功率MOSFET做整流器時(shí),要求柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。
工作方式的比較
傳統(tǒng)的同步整流方案基本上都是PWM型同步整流,主開關(guān)與同步整流開關(guān)的驅(qū)動(dòng)信號(hào)之間必須設(shè)置一定的死區(qū)時(shí)間,以避免交叉導(dǎo)通,因此,同步整流MOS管就存在體二極管導(dǎo)通和反向恢復(fù)等問題,從而降低同步整流電路的性能。
雙端自激、隔離式同步整流電路
實(shí)際舉例(反激同步整流設(shè)計(jì) )
基本的反激電路結(jié)構(gòu)
一種實(shí)際的外驅(qū)電路
增加驅(qū)動(dòng)能力的外驅(qū)電路
由NMOSFET構(gòu)成的反激同步整流自驅(qū)動(dòng)電路結(jié)構(gòu)
由PMOSFET構(gòu)成的反激同步整流自驅(qū)動(dòng)電路結(jié)構(gòu)
反激同步整流驅(qū)動(dòng)電路選擇
同步整流管的驅(qū)動(dòng)方式有三種:第一種是外加驅(qū)動(dòng)控制電路,優(yōu)點(diǎn)是其驅(qū)動(dòng)波形的質(zhì)量高,調(diào)試方便。缺點(diǎn)是:電路復(fù)雜,成本高,在追求小型化和低成本的今天只有研究價(jià)值,基本沒有應(yīng)用價(jià)值。上圖是簡單的外驅(qū)電路,R1D1用于調(diào)整死區(qū)。該電路的驅(qū)動(dòng)能力較小,在同步整流管的Ciss較小時(shí),可以使用。圖6是在圖5的基礎(chǔ)上增加副邊推挽驅(qū)動(dòng)電路的結(jié)構(gòu),可以驅(qū)動(dòng)Ciss較大的MOSFET。在輸出電壓低于5V時(shí),需要增加驅(qū)動(dòng)電路供電電源。
第二種是自驅(qū)動(dòng)同步整流。優(yōu)點(diǎn)是直接由變壓器副邊繞組驅(qū)動(dòng)或在主變壓器上加獨(dú)立驅(qū)動(dòng)繞組,電路簡單、成本低和自適應(yīng)驅(qū)動(dòng)是主要優(yōu)勢,在商業(yè)化產(chǎn)品中廣泛使用。缺點(diǎn)是電路調(diào)試的柔性較少,在寬輸入低壓范圍時(shí),有些波形需要附加限幅整形電路才能滿足驅(qū)動(dòng)要求。由于Vgs的正向驅(qū)動(dòng)都正比于輸出電壓,調(diào)節(jié)驅(qū)動(dòng)繞組的匝數(shù)可以確定比例系數(shù),且輸出電壓都是很穩(wěn)定的,所以驅(qū)動(dòng)電壓也很穩(wěn)定。比較麻煩的是負(fù)向電壓可能會(huì)超標(biāo),需要在設(shè)計(jì)變壓器變比時(shí)考慮驅(qū)動(dòng)負(fù)壓幅度。
第三種是半自驅(qū)。其驅(qū)動(dòng)波形的上升或下降沿,一個(gè)是由主變壓器提供的信號(hào),另一個(gè)是獨(dú)立的外驅(qū)動(dòng)電路提供的信號(hào)。上圖是針對自驅(qū)的負(fù)壓問題,用單獨(dú)的放電回路,提供同步整流管的關(guān)斷信號(hào),避開了自驅(qū)動(dòng)負(fù)壓放電的電壓超標(biāo)問題。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 精準(zhǔn)監(jiān)測電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器