你的位置:首頁 > 電路保護 > 正文

電源控制芯片中的過流保護設(shè)計方案

發(fā)布時間:2012-05-15

中心議題:
  • 介紹一款閉環(huán)控制型的過流保護電路
  • 過流保護電路模塊的仿真
  • 過流保護電路設(shè)計
解決方案:
  • 采用直接檢測LDMOS漏端電壓來判斷其是否過流的設(shè)計方案

本文介紹采用直接檢測LDMOS 漏端電壓來判斷其是否過流的設(shè)計方案,給出了電路結(jié)構(gòu)。通過電路分析,并利用BCD 高壓工藝,在cadence 環(huán)境下進行電路仿真驗證。結(jié)果證明:該方法能夠快速、實時地實現(xiàn)過流保護功能,相比其它方法,在功耗、效率、工藝兼容性、成本等方面均有很大提高,可以直接應(yīng)用于電源控制芯片中的安全保護設(shè)計。

1 引言

家電、便攜電子設(shè)備和手持電器的迅猛發(fā)展,已使電源適配器芯片成為集成電路的大宗產(chǎn)品類。由于該類芯片中內(nèi)嵌集成或需要外部連接功率LDMOS 管,應(yīng)用中的LDMOS 管又需要直接和高壓相聯(lián)接并通過大電流(目前的LDMOS 管已經(jīng)能耐受數(shù)百乃至近千伏的高壓)。因此,如何保障芯片和LDMOS 管的安全工作是芯片設(shè)計的重點之一。

利用片上二極管正向壓降的負溫度特性來監(jiān)測芯片的熱狀態(tài),進而控制功率LDMOS 管的開關(guān)是一種可行的安全設(shè)計方法。但是由于硅片存在熱惰性,故不能做到即時控制。該方法更適宜作安全設(shè)計的第二道防線。

從芯片設(shè)計看,要確保適配器芯片使用的安全性,比較好的方法應(yīng)該是直接監(jiān)測流經(jīng)LDMOS 管的大電流或LDMOS 管的漏極電壓,以實時監(jiān)控芯片的工作狀態(tài)。一般采取兩種方案:(一)在功率MOS 管源端對地串聯(lián)一個小電阻用于檢測源極電流,如圖1(a)所示;(二)是通過檢測電路監(jiān)控LDMOS 的漏端電壓,如圖1(b)所示。前一種方案至少有以下缺點:(1)由于工藝存在離散性,電阻值很難做到精確(誤差在20%左右);(2)源極串入電阻后,使原本導(dǎo)通電阻很大的LDMOS 管的管壓降進一步增大,功率處理能力變?nèi)?;?)電阻上流過大電流,消耗了不必要的能量,降低了開關(guān)電源的轉(zhuǎn)換效率。

圖1(a)串聯(lián)電阻檢測電流圖1(b)直接檢測漏端電壓

而采用后一種方案,因為利用了集成電路的特點(電壓采樣電路的電阻比精度很容易做到1%),電路處理并不太復(fù)雜。重要的是LDMOS 管沒有源極串聯(lián)電阻,可減少能量損耗,不影響LDMOS 管的功率處理能力,提高了電源轉(zhuǎn)換效率。

直接檢測漏端電壓判斷LDMOS 是否過流的設(shè)計思想是在LDMOS 管導(dǎo)通時,通過采樣電路檢測LDMOS 漏端電壓,經(jīng)比較,過流比較器輸出一個低電平過流信號以關(guān)閉LDMOS 管;而在LDMOS 管截止期間,采樣電路不工作,同時為了提高可靠性將比較器窗口電平適度拉高。

圖2 是實現(xiàn)上述功能的電路框架圖,由過流比較模塊、控制邏輯等組成。

圖2 過流保護電路框架
[page]
2 電路設(shè)計

2.1 過流比較模塊


過流比較模塊主要由前沿消隱Leadedge、采樣電路Sample、比較電壓產(chǎn)生器ToCompare 和過流比較器Comparator 等組成,如圖3 所示。

前沿消隱電路由于存在片上寄生或外接電容和電感的影響,在LDMOS 管開啟的瞬間,會在LDMOS 管漏極輸出端出現(xiàn)尖峰電壓,可能造成過流誤判。必須增設(shè)前沿消隱電路,即對LDMOS 管柵控電壓產(chǎn)生一個時間延遲,使在LDMOS 管開啟的瞬間將過流比較器閉鎖,等到尖峰通過后,再對LDMOS 管漏極信號進行采樣測量和過流判斷,從而消除漏電壓尖峰的影響。如圖3 所示,我們在其中加入一個偏置在固定電壓V(BIASN)的NMOS 管,它相當(dāng)于一個固定電流源,以限制電容放電的時間。

圖3 過流比較模塊電路圖

合理設(shè)計相關(guān)的器件參數(shù)可以控制延遲時間的大小。

采樣電路用開關(guān)控制電路實現(xiàn)對LDMOS 漏端的周期性電壓采樣,其中分壓電路可采用大阻值有比電路結(jié)構(gòu)。根據(jù)集成電路的特點,電阻比值的誤差很容易被控制在1%范圍之內(nèi)。

當(dāng)LDMOS 的柵電壓V (GATE) 為高,即LDMOS 管導(dǎo)通時,使圖3 中的采樣開關(guān)管M10(具有較高耐壓和較低導(dǎo)通電阻特性)也導(dǎo)通,同時開始采集LDMOS 管的飽和漏極電壓;而當(dāng)LDMOS 管的柵電壓V(GATE)為低,即LDMOS 管關(guān)閉時(非過流現(xiàn)象),采樣電路則不工作。

比較電壓產(chǎn)生器的電路工作原理如下:由于過流狀態(tài)只發(fā)生在功率LDMOS 管柵極為高電平狀態(tài)。故當(dāng)V(GATEDelayed)為低電平時,I1、I2和I3將同時對電容Ccompare充電, 使比較電壓V(Compare) 值升高??紤]到采樣電壓最大值為2.5V,為避免誤操作,可設(shè)置比較電壓值為2.7 V,以使后繼比較電路工作的門限電平增加,提高抗干擾能力;與此同時,采樣電容CsAMPle將通過電阻R2快速放電,使采樣電壓V(Sample)快速變?yōu)榱?,即相?yīng)輸出為非過流狀態(tài)。

而當(dāng)柵極電壓V(GATEDelayed)為高電平時,輸出比較電壓則變?yōu)閂(Compare)=I1×R3=1.0 V。

過流比較器過流比較器采用常見的NPN 差分對管的輸入方式,恒流源偏置。與傳統(tǒng)恒流源偏置略有不同的是在偏置電路中增加了MOS 開關(guān),當(dāng)V(GATE)為高時(此時LDMOS 和該MOS 開關(guān)同時導(dǎo)通),電路圖左側(cè)恒流源工作,使總偏置電流變大,輸出緩沖級的驅(qū)動電流增大,比較電路速度加快;在V(GATE)為低時,左側(cè)的恒流源不工作,總偏置電流變?。ù藭rLDMOS 不導(dǎo)通,過流比較器處于閑置狀態(tài)),為節(jié)能模式。

2.2 控制邏輯

控制邏輯模塊如圖4 所示,該模塊直接控制LDMOS 的開關(guān)。PULSE 信號的上升沿對應(yīng)是CLOCK 時鐘的開始,PULSE 信號與時鐘CLOCK 的關(guān)系如圖9 所示。當(dāng)發(fā)生過流時,OVERCURRENT信號為低,觸發(fā)器R 端為高,Q 為低,GateSwitch 信號為低,關(guān)斷LDMOS,從而實現(xiàn)過流保護功能。

圖4 控制邏輯電路圖

3 仿真結(jié)果

我們利用BCD 高壓工藝,在cadence 環(huán)境下進行電路仿真驗證。結(jié)果如下:

前沿消隱電路的仿真仿真條件:取電源電壓為5.8 V,2 pF 的電容在10μA 的放電電流情況下,延遲時間為Tdelay=C*0.
[page]
5VDD/I =2p*2.9/10μ= 0.58μs,仿真結(jié)果如圖5 所示。

圖5 前沿消隱電路仿真

采樣電路的仿真

設(shè)檢測端電壓一般在10~50 V 之間變化,我們設(shè)置V(Detect)=SIN(30,20,50 k);周期為20μS;又設(shè)在采樣周期內(nèi),比較電壓為1 V;依據(jù)LDMOS管導(dǎo)通特性,設(shè)輸出漏電壓高于某值(本例為20伏)為過流,則分壓比設(shè)計為K = R4/ ( R3+R4)=5 k/(5 k+95 k)=1/20, 于是得到采樣電壓值為V(Sample)=V(Detect)*k =SIN(1.5,1,50 k),即最大值為2.5,最小值為0.5。同樣地,我們在采樣電路輸出端加上一個電容以消除電壓尖峰影響。該采樣電路仿真結(jié)果如圖6 所示。

圖6 采樣電路仿真

比較電壓產(chǎn)生器的仿真

在比較電壓產(chǎn)生器輸出端應(yīng)加上電容Ccompare,以消除由于開關(guān)管導(dǎo)通的瞬間在Ccompare端產(chǎn)生的尖峰電壓,仿真結(jié)果如圖7 所示,其中虛/ 實線分別為有無電容存在時的仿真結(jié)果。顯然,電容Ccompare的存在極大地改善了輸出波形。電容Ccompare大小的選擇,應(yīng)該權(quán)衡消峰效果、充電速度和芯片面積消耗間關(guān)系。

圖7 添加電容Ccompare 前后的比較

本例中,取Ccompare為4 pF。
[page] 
過流保護電路模塊的仿真

對圖3 進行電路仿真,電源電壓VCC 為5.8 V,LDMOS 漏端檢測電壓在10~50 V 之間,柵端電壓脈沖頻率為132 kHz,占空比為60%的方波,SPICE仿真條件設(shè)置為VCC=5.8 V,V (Detect)= SIN(30,20,50k),V (Gate)=PULSE(0,5.8,0.5u,0.5u,0.5u,3u,7u),仿真結(jié)果如圖8 所示。在1.26 uS~4.17 uS 和8.25 uS~11.2 uS 這兩個采樣區(qū)間內(nèi),采樣電壓V(Sample)較比較電壓V(Compare)大,輸出為低電平(過流保護,低電平有效);在15.2 uS~18.2 uS 采樣區(qū)間內(nèi),采樣電壓V (Sample) 較比較電壓V(Compare)小,輸出為高電平,對應(yīng)不發(fā)生過流情況;其他時間段內(nèi)柵電壓處于低電平,對應(yīng)LDMOS處于關(guān)斷態(tài),不可能發(fā)生過流,故過流輸出信號OverCurrent 為高電平。仿真結(jié)果表明,該電路確實能很好地實現(xiàn)過流保護的功能。

圖8 過流保護電路仿真結(jié)果

控制邏輯電路的仿真

在圖4 所示的控制邏輯中,設(shè)置時鐘CLOCK為PULSE (0,5.8,0,0,0,4u,7u), 過流信號OVERCURRENT 在15us 時從高電平跳變?yōu)榈碗娖?,進行仿真。PULSE 信號記錄了CLOCK 信號的開始, 并周期性檢測過流信號。當(dāng)過流信號OVERCURRENT 低電平有效時,R 為高電平,將RS觸發(fā)器輸出Q 復(fù)位為低電平,此時FC 為高電平,柵控信號GateSwitch 輸出為低電平,關(guān)斷LDMOS。仿真結(jié)果如圖9(b)所示。

圖9 控制邏輯電路的仿真

閉環(huán)控制電路的整體仿真
[page] 
如圖10 所示,圖3 電路和外接LDMOS 形成一個閉環(huán)控制系統(tǒng)。仿真結(jié)果如圖11 所示:在沒有發(fā)生過流時,柵極電壓的占空比最大;有過流發(fā)生時,過流信號OverCurrent 將柵極電壓強制設(shè)置為低電平,關(guān)斷LDMOS,從而達到了過流保護效果。

圖10 閉環(huán)總體仿真原理圖

圖11 閉環(huán)總體仿真波形

3 結(jié)論

本文闡述了幾種過流檢測方法,分析了每種方法的優(yōu)缺點。設(shè)計了一款閉環(huán)控制型的過流保護電路,它采用直接檢測LDMOS 管漏端電壓的方法,可以克服采用電阻檢測時消耗能量,芯片容易發(fā)熱的缺點,同時提高了開關(guān)電源DC/DC 的能量轉(zhuǎn)換效率。另外,采取有比采樣電路設(shè)計,克服了工藝偏差的影響,提高了采樣精度。

基于3μm高壓BCD 工藝,我們在Cadence 設(shè)計環(huán)境中利用電路模擬器Spectre 對該控制電路進行了分模塊和整體模塊的仿真,結(jié)果表明該電路可以較好地實現(xiàn)實時過流保護功能。
要采購開關(guān)么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉