如何提高數(shù)字電位器的帶寬?
發(fā)布時(shí)間:2021-02-19 責(zé)任編輯:lina
【導(dǎo)讀】數(shù)字電位器(digital pot或digipot)被廣泛用于控制或調(diào)整電路參數(shù)。一般而言,由于數(shù)字電位器本身的帶寬限制,它只能用于直流或低頻應(yīng)用。其典型的-3dB帶寬在100kHz至幾MHz內(nèi),具體與型號(hào)有關(guān)。試問(wèn)要如何將信號(hào)帶寬從10被提高到100倍。
在很多數(shù)字電位器應(yīng)用中,電位器用于對(duì)信號(hào)進(jìn)行微調(diào),并不需要從0%到100%的滿量程調(diào)整,例如:一次性工廠校準(zhǔn)等。在這些例子中,數(shù)字電位器一般提供10%以下的調(diào)整范圍??梢岳眠@一有限的調(diào)整范圍來(lái)提高數(shù)字電位器的帶寬。
典型的電位器電路配置如下圖所示。這里,數(shù)字電位器用于改變信號(hào)的衰減量。R2為數(shù)字電位器,圖中還標(biāo)出了寄生電容(Cwiper)。該電容是所有數(shù)字電位器固有的,它限制了電路帶寬。電位器在0至滿量程之間擺動(dòng)時(shí),R1和R3用于限制由數(shù)字電位器引起的信號(hào)衰減。
為計(jì)算電路的傳輸函數(shù)(VOUT/VIN),可以使用不同模式的電位器—參見(jiàn)下圖。圖中,R2被分成了R2top和R2bottom,其中,R2top是電位器觸點(diǎn)以上的電阻,R2bottom是電位器觸點(diǎn)以下的電阻。假設(shè)我們使用的電位器具有10kΩ的端到端電阻(忽略觸點(diǎn)電阻的影響),R2top和R2bottom相對(duì)于數(shù)字編碼的理想傳輸函數(shù)如第二張圖所示。下面介紹了傳輸函數(shù)的兩個(gè)端點(diǎn)和中點(diǎn):
(1) 當(dāng)電位器編碼 = 0時(shí),R2top = 10kΩ,R2bottom = 0kΩ
(2) 當(dāng)電位器編碼 = 中間位置時(shí),R2top = R2bottom = 5kΩ
(3) 當(dāng)電位器編碼 = 滿標(biāo)位置時(shí),R2top = 0kΩ,R2bottom = 10kΩ
從下圖可以得出VOUT/VIN的直流傳輸函數(shù):
(4) VOUT/VIN = (R3 + R2bottom)/(R1 + R2 + R3),其中R2 = R2top + R2bottom
下面,讓我們做一些假設(shè):
假設(shè)R2 = 10kΩ (常用的數(shù)字電位器電阻值),如果希望把輸入信號(hào)衰減到任意電平,例如,輸入值的70% ±5% (輸入值的65%到75%)。
然后,使用式(1)–(4),可以看到有65%到75%的調(diào)整范圍,標(biāo)稱值(中間位置)為70%:
(5) R1 = 24.9kΩ并且R3 = 64.9kΩ
典型應(yīng)用電路的帶寬
利用式(5)的電阻值,假設(shè)Cwiper = 10pF,可以獲得表1所列出的帶寬。實(shí)際觸點(diǎn)電容在3pF在80pF范圍內(nèi),與觸點(diǎn)電阻、步長(zhǎng)數(shù)、所采用的IC工藝以及電位器體系結(jié)構(gòu)等因素有關(guān)。3V至5V供電、32至256步長(zhǎng)的10kΩ電位器的典型電容值為3pF–10pF。
注意,以上分析基于的假設(shè)是:觸點(diǎn)電容與電位器電阻并聯(lián),由此限制電位器的帶寬。這種方法是最直接的電位器使用方式,如果采用更復(fù)雜的電位器配置,可能會(huì)進(jìn)一步限制帶寬。因此,下面對(duì)提高帶寬的討論非常有用,即使實(shí)際得到的帶寬沒(méi)有達(dá)到預(yù)期目的。
表1. 圖1電路的帶寬,采用式5電阻
Condition Cwiper = 10pF*
-0.1dB bandwidth -0.5dB bandwidth -3dB Bandwidth
Pot at 0 Code 106kHz 245kHz 702kHz
Pot at Mid Scale 115kHz 265kHz 760kHz
Pot at Full Scale 130kHz 296kHz 852kHz
*注意,帶寬與觸點(diǎn)電容成反比。例如,采用3pF Cwiper,帶寬頻率將提高3.3倍(即,10/3)。
對(duì)于視頻等應(yīng)用,這些帶寬還是過(guò)低。
提高電路帶寬
使用低電阻電位器
一種提高電路帶寬最明顯的方法是選擇具有較低阻值的數(shù)字電位器,例如,1kΩ電位器,按比例調(diào)整R1和R2 (1kΩ電位器與10kΩ電位器相比,阻值減小10倍)。然而,低阻值數(shù)字電位器(1kΩ)一般占用較大的裸片面積,意味著較高的成本和較大的封裝尺寸,出于這一原因,1kΩ電位器的實(shí)際應(yīng)用非常有限。
如果某一電位器能夠滿足設(shè)計(jì)要求,上面提到的10kΩ電位器的帶寬會(huì)隨著電阻的減小而線性提高,例如,提高10倍(假設(shè)雜散觸點(diǎn)電容沒(méi)有變化)。
例如,使用1kΩ電位器,設(shè)置R1 = 2.49kΩ, R3 = 6.49kΩ,觸點(diǎn)電容為10pF,電位器設(shè)在中間位置,可以獲得1.15MHz的-0.1dB帶寬,以及7.6MHz的-3dB帶寬。這要比表1所列出的帶寬提高10倍。
使用10kΩ電位器,改變電路拓?fù)?/div>
使用高精度電位器,限制編碼范圍
與1kΩ電位器相比,選擇5kΩ和10kΩ電位器可能是更好的方案–可以獲得更小封裝的電位器,從中可以選擇易失或非易失存儲(chǔ)器,也有更多的數(shù)字接口選擇(up/down、I²C、SPI™)以及調(diào)整步長(zhǎng)(32、64、128、256等)。
出于這一原因,下面的設(shè)計(jì)實(shí)例選擇了具有10kΩ端到端電阻的電位器。
假設(shè)由于成本、體積、接口以及電位器調(diào)整步長(zhǎng)等因素的限制,需要使用10kΩ端到端電阻電位器,這種情況下如何提高圖1電路的帶寬呢?
提高帶寬的一種方法是去掉電阻R1和R3,使用步長(zhǎng)數(shù)多于圖1電路要求的電位器。例如,32步長(zhǎng)電位器獲得10%的調(diào)整范圍,按照上述介紹,可以選擇替換這一步長(zhǎng)的電位器,而使用256步長(zhǎng)電位器,去掉R4和R6,限制電位器的調(diào)整范圍在達(dá)到要求衰減的編碼之內(nèi)—我們繼續(xù)上面的設(shè)計(jì)目標(biāo),65%到75%。這種方法在圖5給出了解釋。所使用的編碼是從0.65 × 256 ( = 166.4,使用166)到編碼0.75 × 256 ( = 192)。這個(gè)例子中使用了一個(gè)256步長(zhǎng)的電位器;由于有限的編碼將可用步長(zhǎng)數(shù)限制在26 (即,10%的調(diào)整范圍,僅用了256步長(zhǎng)的10%)。26步長(zhǎng)可用范圍對(duì)應(yīng)于上例中的32步長(zhǎng)范圍。
與32步長(zhǎng)的電位器相比,這一方法的一個(gè)缺點(diǎn)是:256步長(zhǎng)電位器的成本要高得多,可以選擇的電位器封裝尺寸較大(額外的精度需要額外的開(kāi)關(guān)—例如,256步長(zhǎng)和32步長(zhǎng)相比,需要占用額外的裸片面積,而且,這些開(kāi)關(guān)并不利于改善Cwiper)。假設(shè)Cwiper為30pF,VOUT/VIN = 0.70—在調(diào)整范圍的中點(diǎn),圖5電路有384kHz的-0.1dB帶寬,879kHz的-0.5dB帶寬,2.52MHz的-3dB帶寬。與表1結(jié)果相比,帶寬提高了3倍。
一種成本更低、性能更好的方案是在圖1電路中加入一些分立電阻,如圖6所示。
使用并聯(lián)電阻降低電路阻抗
圖6中的電路在圖1基礎(chǔ)上增加了并聯(lián)電阻(注意,使用了圖2中引入的數(shù)字電位器模型)。并聯(lián)電阻降低了電路阻抗(從而提高了帶寬),通過(guò)設(shè)置電路增益,限制由數(shù)字電位器在0編碼到滿標(biāo)編碼之間擺動(dòng)時(shí)導(dǎo)致的衰減,可以達(dá)到雙重目的。
設(shè)置電位器電路增益,使用并聯(lián)器件限制其調(diào)整范圍(R4和R5,而不是簡(jiǎn)單使用串聯(lián)器件R1、R2和R3),電路帶寬優(yōu)于圖1帶寬。
還需要注意,電阻R1、R2和R3還會(huì)影響電路增益,但是由于其串聯(lián)電阻要比R4和R5大得多,這種影響非常小。
可以通過(guò)幾個(gè)簡(jiǎn)單的示例來(lái)說(shuō)明R4和R5對(duì)圖6電路的影響。在圖7中,電路上部的電阻采用了圖中方程給出的電阻組合值。注意,由于R4是與R1和R2top并聯(lián),它降低了電路阻抗。
在圖8中,電路下部的電阻采用了圖中方程給出的電阻組合值。注意,由于R5與R3和R2bottom并聯(lián),它也降低了電路阻抗。正是較低的電路阻抗使得帶寬大大體高,達(dá)到設(shè)計(jì)目標(biāo)的要求。
圖9結(jié)合了前面圖中的簡(jiǎn)化示例,給出了VOUT/VIN傳輸函數(shù)。從該圖中可以清楚看到,通過(guò)降低電路阻抗(Rtop小于R1 + R2top,Rbottom小于R2bottom + R3),提高了電路帶寬。
實(shí)際值
實(shí)際設(shè)置R1、R3、R4和R5的阻值,可以對(duì)比圖1電路得到的帶寬,從而確定R4和R5對(duì)電路性能的影響。
使用圖9中的方程,可以得出R1、R3、R4和R5的阻值,然后計(jì)算最終帶寬。
使用表格,可以找到滿足圖9方程的元件值:
(6) R1 = 3.48kΩ、R2 = 10kΩ、R3 = 4.53kΩ、R4 = 1kΩ和R5 = 2.8kΩ
采用這些元件值得出了表2列出的帶寬。注意,這些結(jié)果比圖1電路改善100倍,其數(shù)據(jù)列在表1中
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開(kāi)啟——體驗(yàn)科技驅(qū)動(dòng)的未來(lái)汽車(chē)世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽(yáng)能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測(cè)量
- 貿(mào)澤開(kāi)售Nordic Semiconductor nRF9151-DK開(kāi)發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車(chē)規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開(kāi)啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線檢測(cè) 芯片查詢 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉