多年來,采用行人航位推算(PDR)技術(shù)的室內(nèi)定位系統(tǒng)受到了學(xué)術(shù)和商業(yè)領(lǐng)域的廣泛關(guān)注?,F(xiàn)有的各種傳感器解決方案通常是使用加速度計(jì)來計(jì)算步數(shù),并使用磁力計(jì)和/或陀螺儀來測(cè)量行走方向的變化。測(cè)量準(zhǔn)確率在行進(jìn)距離的0.5%到10%之間。但所有這些方法都要求用戶從始至終保持身體平衡,以確保移動(dòng)感應(yīng)設(shè)備的平穩(wěn),就如同行走的同時(shí)還要保持一塊蛋糕的平衡一樣,也就是所謂的“蛋糕步”。
但是智能手機(jī)的室內(nèi)定位系統(tǒng)要能夠讓用戶自由移動(dòng),且無論手機(jī)如何放置都能提供合理的結(jié)果。通過開發(fā)傳感器算法來進(jìn)行室內(nèi)定位是極為復(fù)雜的,這在一定程度上是因?yàn)樗惴〞?huì)受下列因素變化的影響,且隨著環(huán)境的實(shí)時(shí)變化,系統(tǒng)還必須同時(shí)兼顧到這些因素。
地磁異常隨處可見。定向的不確定性是造成定位出錯(cuò)的主要原因。盡管使用磁力計(jì)可以避免定向過程中出現(xiàn)的“航向漂移”問題,但智能手機(jī)通常在一天中60%的時(shí)間里都會(huì)出現(xiàn)地磁異常。如圖1所示,當(dāng)平穩(wěn)地拿著手機(jī)經(jīng)過一根普通的電線桿時(shí),可以看到,航向出現(xiàn)擺動(dòng),變得極不準(zhǔn)確。而通過算法的精心設(shè)計(jì),可以檢測(cè)到這些異常并進(jìn)行彌補(bǔ),使定向更加精準(zhǔn)(如圖中藍(lán)線所示)。
Galaxy SIII Walking Past Electrical Pole:Galaxy SIII經(jīng)過電線桿時(shí)的航向偏移
圖1.當(dāng)經(jīng)過電磁干擾源(如電線桿)時(shí),一個(gè)普通缺省設(shè)置的安卓手機(jī)的定向功能會(huì)變得很差(紅線)。在向同一臺(tái)手機(jī)植入并安裝Sensor Platforms公司的FreeMotion Library后,定向功能變得精確(藍(lán)線)。
Yaw (deg):航向偏移量(單位:度)
Time (sec):時(shí)間(單位:秒)
智能手機(jī)中的消費(fèi)級(jí)慣性傳感器噪音大且不穩(wěn)定。一些學(xué)術(shù)文章中將加速度計(jì)噪音達(dá)到1mg且陀螺儀偏置漂移達(dá)到每小時(shí)20度(與軍工級(jí)傳感器相比相距甚遠(yuǎn))的慣性測(cè)量單元(IMU)稱為低質(zhì)IMU.然而,即便智能手機(jī)中最好的傳感器,也會(huì)產(chǎn)生比該值多一到兩個(gè)數(shù)量級(jí)的噪音。因此,這種噪音累積會(huì)迅速導(dǎo)致嚴(yán)重的定位錯(cuò)誤。在提高傳感器硬件性能之前,需要引入一些算法來減少航位推算錯(cuò)誤,例如運(yùn)用PDR技術(shù)來計(jì)算步數(shù)。
[page]
不同的攜帶模式需要不同的算法。PDR技術(shù)能夠通過檢測(cè)步數(shù)來減少集成錯(cuò)誤。然而,僅是用手在空中簡(jiǎn)單的搖晃手機(jī)也同樣會(huì)產(chǎn)生類似于行走的運(yùn)動(dòng)。這一問題在以往已經(jīng)得到解決,例如,對(duì)第一響應(yīng)者來說,可以將傳感器模塊綁定在衣服或鞋子上的特定位置,這樣就可以避免該問題并提供可靠的結(jié)果。
然而,這一方案并不適用于智能手機(jī)平臺(tái)。因?yàn)槿藗兺ǔ2粫?huì)把手機(jī)放在鞋子里,當(dāng)然也不會(huì)像拿蛋糕一樣小心翼翼地?cái)y帶手機(jī),相反,在人們行走的過程中,手機(jī)可能會(huì)放置在任何地方:口袋里、耳邊、錢包里或直接拿在手上。因此,無論手機(jī)放置在哪里,智能手機(jī)的PDR功能必須能夠跟蹤定位用戶的位置。
圖2展示了人們?cè)谛凶邥r(shí),手機(jī)在三種不同的攜帶方式下傳感器信號(hào)的差異,這三種攜帶方式分別是:放在口袋里、握在手里正面朝上(看著屏幕)和握在手里側(cè)面朝上。盡管信號(hào)具有相似的特性,然而信號(hào)幅度、本底噪聲、總機(jī)械能甚至曲線本身的形狀都會(huì)隨傳感器位置的變化而不同。而經(jīng)過精心設(shè)計(jì)的環(huán)境感知算法可以可靠地區(qū)分用戶是將手機(jī)放在口袋里、握在手里正面朝上、握在手里側(cè)面朝上或是從一個(gè)位置換到另一個(gè)位置。這類算法運(yùn)用傳感器數(shù)據(jù)的多個(gè)方面來構(gòu)建對(duì)周邊環(huán)境的一致認(rèn)知,掌握手機(jī)所處的位置后,就可以適時(shí)地使用正確的PDR算法。
圖2.行走時(shí)的加速度計(jì)信號(hào)圖,比較三種不同的攜帶狀態(tài):放在褲兜時(shí)一條腿的信號(hào)強(qiáng)于另一條腿的信號(hào);握在手里正面朝上時(shí),兩種信號(hào)幾乎相同;握在手里側(cè)面朝上時(shí),手臂搖擺等因素導(dǎo)致了一些不規(guī)則變化。
Vertical acceleration while walking:步行時(shí)的垂直加速度Pant pocket:放在口袋里Hand front:握在手里正面朝上Hand side:握在手里側(cè)面朝上Time (sec):時(shí)間(單位:秒) 行進(jìn)方向不同于移動(dòng)設(shè)備的朝向。多數(shù)傳感器算法都會(huì)注重移動(dòng)設(shè)備的朝向,但實(shí)際上真正重要的卻是用戶移動(dòng)的方向。這種行進(jìn)方向稱為“方位”,它和方向是兩個(gè)概念。方位是區(qū)分PDR和步數(shù)計(jì)算的因素之一。通過從設(shè)備方向中辨別出用戶的行進(jìn)方向和設(shè)備朝向,算法能夠得出按圈行走實(shí)際上會(huì)回到起始點(diǎn)。
PDR技術(shù)是強(qiáng)大的室內(nèi)定位工具,然而,其運(yùn)行的環(huán)境卻非常復(fù)雜。以往的解決方案都是要求用戶在攜帶PDR系統(tǒng)時(shí)走“蛋糕步”。而如今,引入新環(huán)境信息集合的算法已經(jīng)解決了諸多類似問題。相信這些新的系統(tǒng)定能幫助定位服務(wù)走出困境,走向輝煌。
相關(guān)閱讀:
設(shè)計(jì)達(dá)人:發(fā)電系統(tǒng)設(shè)計(jì)中虛擬樣機(jī)的使用
http://m.anotherwordforlearning.com/power-art/80022508
詳拆TCL么么噠手機(jī),做工遠(yuǎn)勝紅米?
http://m.anotherwordforlearning.com/gptech-art/80022796