【導讀】功率轉(zhuǎn)換器的每個部分幾乎都存在損耗源,關(guān)鍵區(qū)域的性能即使只改進了幾個百分點,可能也會意義重大。為了準確評估和測量這么小的性能提高,異常準確的測量至關(guān)重要。選擇最好的探頭與應(yīng)用關(guān)系密切,因此必須了解應(yīng)用的測量要求,確保探頭與工作完全適應(yīng)。
今天的電源設(shè)計人員和測試工程師都在努力尋找非常小的漸進改良方案,來提高功率轉(zhuǎn)換效率,或降低設(shè)計中的損耗。這要求能夠準確評估和測量非常小的性能提高。
幾乎在功率轉(zhuǎn)換器的每個部分都存在損耗源,關(guān)鍵區(qū)域通常包括開關(guān)半導體、磁性元件和整流器。即使性能只改進了幾個百分點,甚至是不到百分之一,可能也會具有重大的意義。而為了準確評估和測量這么小的性能提高,異常準確的測量至關(guān)重要。
大多數(shù)示波器都帶有10X衰減無源探頭,因為這種探頭適合在各種各樣的應(yīng)用中進行測量。這些探頭的額定帶寬一般為DC ~ 500 MHz,一般能夠測量高達幾百伏的電壓。當然使用通用探頭進行功率測量也是可以的,但與這些專為功率應(yīng)用設(shè)計的探頭相比,其不可能提供所需的精度,來推動改善功率轉(zhuǎn)換性能。
信號靈敏度
我們看一下通用探頭存在短板的實例。在電源設(shè)計和測量中,一個常見的挑戰(zhàn)是把噪聲與紋波電壓隔開。在本例中,我們要使用通用10X探頭探測3.3 V電源。問題在于, 10X探頭沒有提供足夠的靈敏度,觸發(fā)波形中存在的周期噪聲。這些探頭非常適合許多通用電子測量,因為它們提高了示波器的電壓范圍,提供了相對較高的帶寬。
然而,為了測量幾十毫伏的小信號, 1:1 (1X)探頭會是更好的選擇,因為它導致的信號衰減不大,不會把信號向下推進到示波器的噪底。遺憾的是,這種靈敏度優(yōu)勢被它的帶寬劣勢抵消了,其帶寬通常只有15 MHz左右。如果這種帶寬對測量不夠,那么最好使用無源2X探頭。
事實證明,在這種應(yīng)用中,2X探頭是正確的選擇??匆幌聢D1中的波形。黃色軌跡是10X探頭,它調(diào)整到每格10 mV的最低垂直設(shè)置;藍色波形是2X探頭。可以把2X探頭調(diào)節(jié)到每格2 mV的最低垂直設(shè)置。由于電源輸出會產(chǎn)生3 mV紋波的信號,因此很明顯,10X衰減的探頭不太適合這種測量。
圖1:使用2X探頭(藍色軌跡)和10X探頭(黃色軌跡)測量3.3 V電源。
差分測量
上面討論的紋波測量,只是電源設(shè)計和調(diào)試中能夠安全高效地使用單端(參考地電平)探頭的諸多應(yīng)用中的一種。但許多功能轉(zhuǎn)換測量要在浮動環(huán)境中完成,這些應(yīng)用中是不能參考地電平的。
圖2指明了沒有綁到接地,要求差分測量技術(shù)的多種常見的功率轉(zhuǎn)換測量:
- MOSFET上的漏極到源極電壓(VDS)
- 續(xù)流二極管上的二極管電壓
- 電感和變壓器電壓
- 未接地的電阻器中的電壓降
圖2:推/拉功率轉(zhuǎn)換器上的部分差分測量點。
可以通過多種方式執(zhí)行差分測量,包括:
- 使用兩只單端探頭,計算電壓差
- 使用帶有專門設(shè)計的浮動輸入的示波器
- 選擇與測量最匹配的差分探頭
使用兩只單端探頭
一種常用技術(shù)是使用兩只單端探頭,每只探頭的地線接地,并在被測元件的兩側(cè)尖端,如圖3所示。然后把示波器設(shè)置成顯示通道1和通道2之差。這有時稱為 “A-B”,它使用示波器中的數(shù)學運算來顯示兩條通道的電壓差。在需要進行差分測量,但沒有合適的測試設(shè)備時,工程師有時會使用這種技術(shù)。
圖3:使用兩只單端探頭進行準差分測量。
這種方法有幾個問題。只有在探頭和示波器通道非常匹配時(包括增益、偏置、延遲和頻響),這種方法才會得到很好的測量結(jié)果。該方法不能提供非常好的共模抑制(清除兩個輸入共有信號的任何AC部分或DC部分)。此外,如果兩個信號沒有正確定標,可能會出現(xiàn)示波器輸入過載的情況,得到錯誤測量結(jié)果。
使用浮動輸入
我們也可以使用“浮動”示波器。這些示波器的每條輸入通道在電氣上與機箱接地隔離,然后示波器使用電池供電。示波器機箱到接地的寄生電容也非常低。浮動示波器的這些隔離特點,可以使用一只絕緣的無源探頭來進行差分測量。這些儀器非常方便,使用簡便,效果好。但是,差分電壓探頭的電容較低,要求高度平衡。
匹配的差分探頭
為獲得最好的測量精度,使用技術(shù)指標與測量任務(wù)相匹配的差分探頭通常是最佳的選擇。差分探頭是有源器件。它們在探頭尖端有一個專門設(shè)計的差分放大器,只測量經(jīng)過兩個測試點的電壓,而不管任一測試點和接地之間的電位是多少,這就大大簡化了探測任務(wù),消除了某些可能的誤差來源。另外,由于它們只測量差分電壓,因此它們還可以忽略并清除可能存在的共模AC擺幅或DC偏置電壓。
由于被測器件(DUT)不同部分的測量可能有著完全不同的要求,因此必須審慎地選擇探頭。在圖4所示的實例中,手邊的任務(wù)是測量被測電源MOSFET開關(guān)器件的開機損耗、關(guān)機損耗以及傳導損耗。圖4是帶有測量點TP1和TP2的MOSFET的簡化示意圖。
圖4:帶有多個測試點的MOSFET的簡化示意圖。
被測器件是一種“通用”電源,設(shè)計為從世界各國的AC線路(或“市電”)電壓供電。僅此一項,就給工程師的測試要求及測試設(shè)備提出了多項要求:
- 這種器件的額定輸入電壓一般在80 VAC ~ 250 VAC或更寬。為表征全球各種輸入電壓下的性能,不僅要執(zhí)行一項測量,還要在多種輸入電壓下執(zhí)行一系列測量。這適用于被測試的每個性能參數(shù)。開關(guān)特點(及相應(yīng)損耗)預計在每個輸入電壓上都不同,可能不會以線性方式變化。這不僅提高了要執(zhí)行的測量總數(shù),還需要在測量之間實現(xiàn)可重復性。
- 由于輸入供電電壓高達250 VAC,開關(guān)MOSFET中漏極和源極之間的電壓預計會達到354 V或更高。探測解決方案必需擁有足夠的通用性,來測量這些電壓以及在某些測試中還要能夠測量低得多的電壓。
被測電源的開關(guān)速率為250 kHz。根據(jù)測量帶寬常用的5倍法則,這相當于要求1.25 MHz的測量帶寬。但這是現(xiàn)實世界信號速度的簡化版,因為開關(guān)器件的實際上升時間預計會超過它一個量級。同樣,可能還要考察尖峰、瞬態(tài)信號和其他噪聲。如果要測量上升時間為幾十納秒的信號,那么探頭的上升時間應(yīng)在幾納秒。為在這個應(yīng)用實例中準確地進行測量,測量系統(tǒng)的帶寬應(yīng)在350 MHz或更高。
小結(jié)
選擇最好的探頭與應(yīng)用關(guān)系密切,因此必須了解應(yīng)用的測量要求,確保探頭與工作完全適應(yīng)。對許多功率電子測量來說,差分探頭是一個明確的選擇,特別是沒有參考地電平的測量。對參考地電平的測量,單端探頭是一個很好的選擇,但注意不要使用10X探頭,以免過度衰減小信號。對低壓信號,如紋波,最好使用1X探頭或2X探頭。
作者Wilson Lee現(xiàn)任泰克科技公司高級市場經(jīng)理。在加入泰克科技公司之前,Wilson擁有超過25年的專業(yè)經(jīng)驗,先后擔任技術(shù)市場、技術(shù)銷售主管等職位,如CTS電子元器件公司等制造商,以及Richardson RFPD和Premier Farnell等技術(shù)/增值分銷商。Wilson一直專注于RF/無線、工控電源、工控自動化等細分市場內(nèi)部的設(shè)計工作。Wilson從康奈爾大學獲得理學學士學位。While在從業(yè)期間先后居住在紐約、芝加哥和亞洲,目前常住美國俄勒岡州大波特蘭。
本文轉(zhuǎn)載自電子技術(shù)設(shè)計。
推薦閱讀: