【導(dǎo)讀】SiC MOSFET與Si MOSFET在特定的工作條件下會表現(xiàn)出不同的特性,其中重要的一條是SiC MOSFET在長期的門極電應(yīng)力下會產(chǎn)生閾值漂移現(xiàn)象。以下將講解如何通過調(diào)整門極驅(qū)動負(fù)壓,來限制SiC MOSFET閾值漂移的方法。
Vth漂移現(xiàn)象
由于寬禁帶半導(dǎo)體SiC的固有特征,以及不同于Si材料的半導(dǎo)體氧化層界面特性,會引起閾值電壓變化以及漂移現(xiàn)象。為了理解這些差異,解釋這些差異與材料本身特性的關(guān)系,評估其對應(yīng)用、系統(tǒng)的影響,需要更多的研究及探索。
就靜態(tài)門極偏置而言,針對Si器件閾值特性的標(biāo)準(zhǔn)測試流程并不適用于SiC MOSFET。因此,一種新的測試方法——測試-偏置-測試——被用來評估SiC MOSFET的BTI(Bias-Temperature Instabilities,偏壓溫度不穩(wěn)定性)特性。它可以區(qū)分可恢復(fù)的Vth漂移以及永久性的閾值漂移。這種測量技術(shù)已經(jīng)用來對最新發(fā)布的SiC MOSFET的閾值穩(wěn)定性進(jìn)行了深度研究,結(jié)果表明英飛凌CoolSiC MOSFET Vth穩(wěn)定性在眾多的器件中表現(xiàn)優(yōu)異,具有極低的BTI以及非常窄的閾值漂移窗口。
英飛凌對CoolSiC MOSFET在不同的開關(guān)條件下進(jìn)行了長期的研究測試。數(shù)據(jù)顯示,長期的開關(guān)應(yīng)力會引起Vth的緩慢增加。這一現(xiàn)象,在不同品牌、不同技術(shù)的SiC MOSFET上均可以觀測到。相同偏置條件下不同器件的Vth漂移值是相似的。Vth上升會引起Rds(on)的輕微上升,長期影響是通態(tài)損耗會增加。
需要注意的是,器件的基本功能不會被影響,主要有:
1、耐壓能力不會受影響
2、器件的可靠性等級,如抗宇宙射線能力,抵抗?jié)駳獾哪芰Φ炔粫苡绊憽?/div>
3、Vth漂移會對總的開關(guān)損耗有輕微影響
影響Vth漂移的參數(shù)主要包括:
1、開關(guān)次數(shù),包括開關(guān)頻率與操作時(shí)間
2、驅(qū)動電壓,主要是Vgs(off)
以下參數(shù)對開關(guān)操作引起的Vth漂移沒有影響
1、結(jié)溫
2、漏源電壓
3、漏極電流
4、dv/dt, di/dt
Vth漂移對應(yīng)用的影響
長期來看,對于給定的Vgs, 閾值漂移的主要影響在于會增加Rds(on)。通常來說,增加Rds(on)會增加導(dǎo)通損耗,進(jìn)而增加結(jié)溫。在計(jì)算功率循環(huán)時(shí),需要把這個(gè)增加的結(jié)溫也考慮進(jìn)去。
結(jié)溫的增加是否需要格外重視取決于實(shí)際應(yīng)用及工況。在很多案例中,即便是20年工作壽命到期后,結(jié)溫的增加仍然可以忽略不計(jì)。然而在另一些應(yīng)用中結(jié)溫的增加可能就會很重要。因此,在這種情況下,就需要根據(jù)下述的設(shè)計(jì)指導(dǎo)進(jìn)行驅(qū)動電壓選擇。
門極驅(qū)動電壓設(shè)計(jì)指導(dǎo)
通過控制門極負(fù)壓Vgs(off),Vth漂移可以被限制在一個(gè)可接受的水平內(nèi)。不論什么情況下,關(guān)斷電壓的上限都是0V,同時(shí),關(guān)斷電壓的下限需要根據(jù)開通電壓、開關(guān)頻率、以及操作時(shí)間來選擇一個(gè)合適的值,使Rds(on)的增加限制在一定范圍之內(nèi)。
3.1 設(shè)計(jì)指導(dǎo)
Vth的動態(tài)漂移隨著開關(guān)次數(shù)的增加而增加,為了好理解,總的開關(guān)次數(shù)被轉(zhuǎn)化為10年內(nèi)不間斷工作(24小時(shí)/7天)的歸一化的工作頻率。知道實(shí)際工作頻率(kHz),目標(biāo)壽命(年),以及工作壽命之內(nèi)系統(tǒng)工作的百分比,歸一化的工作頻率可以通過以下公式計(jì)算
歸一化頻率 fsw= 實(shí)際工作頻率 fsw [kHz] ×壽命[yrs] ×工作時(shí)間占比[%] ÷ 10 [yrs]
使用估算得到的歸一化頻率,可以從圖1及圖2中找到最小的關(guān)斷電壓Vgs(off)下限值。圖2及圖3分別適用于Vgs(on)=15V及Vgs(on)=18V
圖1:Vgs(on)=15V時(shí)的最低關(guān)斷電壓Vgs(off)
圖2:Vgs(on)=18V時(shí)的最低關(guān)斷電壓Vgs(off)
可以通過以下的例子更好地理解上述計(jì)算方法。如一個(gè)光伏逆變器的典型工況:
1、實(shí)際工作頻率20kHz
2、目標(biāo)工作壽命20年
3、工作占比50%
4、歸一化的工作頻率為20 kHz * 20 yrs. * 50% / 10 yrs. = 20 kHz
如果開通電壓是15V, 關(guān)斷電壓的范圍應(yīng)在-3.6到0V之間(見圖1)。如果開通電壓是18V,關(guān)斷電壓的范圍應(yīng)在在-4.4V到0V之間,如圖2。
3.2 安全工作區(qū)定義
制定安全工作區(qū)的最低關(guān)斷電壓的前提是:
1、最低推薦門極電壓-5V
2、在工作壽命末期,相對于初始值,Rds(on)增加小于15%
因此,在安全工作區(qū)內(nèi)使用器件,在工作壽命末期,Rds(on)增長將會小于15%.
Rds(on)的增量還取決于工作電流Id,和結(jié)溫Tj (如圖3)。因此,Rds(on)的增量需要考慮最嚴(yán)苛的工況。這能夠保證Rds(on)的增加在任何工況下都不會超過15%。工況如下:
1、高電流:兩倍的額定電流
2、中等的結(jié)溫:Tj=100℃
圖3:不同溫度下Rds(on)的相對增長
通常來說,15%的Rds(on)增量是最壞的情況。更大的增量只可能出現(xiàn)在高電流和低結(jié)溫的工況中,這在實(shí)際應(yīng)用中十分罕見。
3.3 使用18V門極電壓時(shí)的注意事項(xiàng)
為了與其它器件兼容,CoolSiC MOSFET可以使用18V的門極電壓。
請注意,高于15V的門極開通電壓對于Rds(on)有兩個(gè)相反的影響
1、它可以減小Rds(on)
2、它會加速Vth漂移效應(yīng),意味著Rds(on)的增長會更快
對于一個(gè)相對比較低的工作頻率(大約小于50kHz),Rds(on)減小效應(yīng)占主導(dǎo)地位。
對于比較高的工作頻率,需要采用一個(gè)較高的負(fù)壓(更接近0V)來防止Vth漂移加速。
需要注意的是,門極電壓18V時(shí)的短路電流要遠(yuǎn)遠(yuǎn)高于15V。因此器件在Vgs(on)=18V時(shí)不能達(dá)到預(yù)定的短路能力。
3.4 減小關(guān)斷負(fù)壓的注意事項(xiàng)
器件工作在一個(gè)較高的門極負(fù)壓時(shí)(如-2V代替-5V),對于應(yīng)用的影響很小。一些應(yīng)用相關(guān)參數(shù)需要考慮如下:
1、Eon 和Eoff會稍微改變
2、SiC MOSFET的體二極管正向壓降會降低
3、誤導(dǎo)通風(fēng)險(xiǎn)增加,可能會增加開通損耗。如在0V關(guān)斷,較高的的關(guān)斷門極電阻,更大的門極-源極回路電感等情況中更加明顯