ADI教你如何把PLL鎖定時間從4.5 ms 縮短到 360 μs?
發(fā)布時間:2020-08-31 來源:亞德諾半導(dǎo)體 責(zé)任編輯:lina
【導(dǎo)讀】利用手動頻段選擇,鎖定時間可從典型值 4.5 ms 縮短到典型值 360 μs。本文以高度集成的解調(diào)器和頻率合成器 ADRF6820 為例,告訴大家如何手動選擇頻段以縮短PLL鎖定時間。
你知道嗎?
利用手動頻段選擇,鎖定時間可從典型值 4.5 ms 縮短到典型值 360 μs。本文以高度集成的解調(diào)器和頻率合成器 ADRF6820 為例,告訴大家如何手動選擇頻段以縮短PLL鎖定時間。
第一:PLL 鎖定
PLL 鎖定過程包括兩個步驟:
通過內(nèi)部環(huán)路自動選擇頻段(粗調(diào))。在寄存器配 期間,PLL 首先根據(jù)內(nèi)部環(huán)路進行切換和配置。隨后由一個算法驅(qū)動 PLL 找到正確的 VCO 頻段。
通過外部環(huán)路細調(diào)。PLL 切換到外部環(huán)路。鑒相器和電荷泵配合外部環(huán)路濾波器工作,形成一個閉環(huán),確保 PLL 鎖定到所需頻率。校準大約需要 94,208 個鑒頻鑒相器 (PFD) 周期;對于一個30.72 MHz fPFD,這相當(dāng) 于3.07 ms。
第二:PLL 鎖定時間
按照上述步驟校準完成后,PLL 的反饋操作使 VCO 鎖定于正確的頻率。鎖定速度取決于非線性周跳行為。PLL總鎖定時間包括兩個部分:VCO頻段校準時間和PLL周跳時間。VCO頻段校準時間僅取決于PFD頻率;PFD頻率越高,鎖定時間越短。PLL 周跳時間由所實現(xiàn)的環(huán)路帶寬決定。當(dāng)環(huán)路帶寬比 PFD 頻率窄時,小數(shù) N 分頻/整 數(shù)N 分頻頻率合成器就會發(fā)生周跳。PFD 輸入端的相位誤差積累過快,PLL 來不及校正,電荷泵暫時沿錯誤方向吸入電荷,使鎖定時間急劇縮短。如果 PFD 頻率與環(huán)路帶寬的比值提高,周跳也會增加;對于給定 PFD 周期,提高環(huán)路帶寬會縮短周跳時間。
因此,當(dāng)使用自動校準模式時,總鎖定時間對某些應(yīng)用來說可能太長。本文提出一種通過手動選擇頻段來顯著縮短鎖定時間的方案,步驟如下:
1?、按照表 1 所示的寄存器初始化序列使器件上電。默認情況下,芯片以自動頻段校準模式工作。根據(jù)所需的 LO 頻率設(shè)置寄存器 0x02、寄存器 0x03 和寄存器0x04。
表1. 寄存器初始化序列
2?、讀取鎖定檢測 (LD) 狀態(tài)位。若 LD 為 1,表明 VCO 已鎖定。
3?、通過串行外設(shè)接口 (SPI) 回讀寄存器 0x46 的位 [5:0]。假設(shè)其值為A,將系統(tǒng)中所有需要的 LO 頻率對應(yīng)的寄存器值保存到 EEPROM。由此便可確定頻率和相關(guān)寄存器值的表格(參見表2)。
表2. 查找表
4、為縮短LD時間,將 ADRF6820 置于手動頻段選擇模式,并用第 3 步收集到的數(shù)據(jù)手動編程。手動編程步驟如下:
a. 將寄存器 0x44 設(shè)置為 0x0001:禁用頻段選擇算法;
b. 將寄存器 0x45 的位 7 設(shè)為 1,從而將 VCO 頻段源設(shè)為已保存的頻段信息,而不是來自頻段計算算法。用第3步記錄的寄存器值設(shè)置寄存器 0x45 中的位 [6:0];
c. 通過寄存器 0x22 的位 [2:0] 選擇適當(dāng)?shù)?VCO 頻率范圍(參見表3);
表3. VCO頻率范圍
d. 根據(jù)所需頻率更新寄存器 0x02、寄存器0x03和寄存器 0x04。寄存器 0x02 設(shè)置分頻器 INT 值,即 VCO 頻率 / PFD 的整數(shù)部分;寄存器 0x03 設(shè)置分頻器 FRAC 值,即 (VCO 頻率/PFD − INT) × MOD;寄存器 0x04 設(shè)置分頻器 MOD 值,即 PFD/頻率分辨率;
e. 監(jiān)視 LD 以檢查頻率是否鎖定。例如,PFD = 30.72 MHz 且 LO = 1600 MHz。
表4. 手動頻段校準寄存器序列
圖 1 和圖 2 分別顯示了自動頻段校準模式和手動頻段校準模式下的鎖定檢測時間。圖 2中,線 1(鎖定檢測)上的高電平表示 PLL 已鎖定。線 2 (LE) 代表 LE 引腳,是一個觸發(fā)信號。注意:鎖定檢測時間必須從低到高讀取。
圖1. 自動頻段校準模式下的鎖定時間,用信號源分析儀測試
圖2. 手動頻段校準模式下的鎖定時間,用示波器測試
自動頻段校準模式下,鎖定時間約為 4.5 ms;手動頻段校準模式下,鎖定時間約為 360 μs。數(shù)據(jù)的測量條件為 20 kHz 環(huán)路濾波器帶寬和 250 μA 電荷泵電流配置。
總結(jié)
經(jīng)過驗證,我們可以看到,利用手動頻段選擇,鎖定時間從典型值 4.5 ms 縮短到了典型值 360 μs。但是對于每個頻率,建議首先利用自動頻段選擇確定最佳頻段值并予以保存,因為最佳頻段值隨器件而異,所以須對每個 ADRF6820 執(zhí)行該程序。VCO 頻段無需因為溫度變化而更新。
(來源:亞德諾半導(dǎo)體)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索