【導(dǎo)讀】所有行業(yè)的制造商都在不斷推動(dòng)提升高端性能,同時(shí)試圖在此類創(chuàng)新與成熟可靠的解決方案之間達(dá)成平衡。設(shè)計(jì)人員面臨著平衡設(shè)計(jì)復(fù)雜性、可靠性和成本這一困難任務(wù)。以一個(gè)電子保護(hù)子系統(tǒng)為例,受其特性限制,無法進(jìn)行創(chuàng)新。這些系統(tǒng)保護(hù)敏感且成本高昂的下游電子器件(FPGA、ASIC和微處理器),這些器件都要求保證零故障。
問題:
有什么有源電路保護(hù)方案可以取代TVS二極管和保險(xiǎn)絲?
答案:
可以試試?yán)擞恳种破鳌?/div>
摘要
所有行業(yè)的制造商都在不斷推動(dòng)提升高端性能,同時(shí)試圖在此類創(chuàng)新與成熟可靠的解決方案之間達(dá)成平衡。設(shè)計(jì)人員面臨著平衡設(shè)計(jì)復(fù)雜性、可靠性和成本這一困難任務(wù)。以一個(gè)電子保護(hù)子系統(tǒng)為例,受其特性限制,無法進(jìn)行創(chuàng)新。這些系統(tǒng)保護(hù)敏感且成本高昂的下游電子器件(FPGA、ASIC和微處理器),這些器件都要求保證零故障。
許多傳統(tǒng)的可靠保護(hù)解決方案(例如二極管、保險(xiǎn)絲和TVS器件)能夠保持待保護(hù)狀態(tài),但它們通常低效、體積龐大且需要維護(hù)。為了解決這些不足,有源智能保護(hù)IC應(yīng)運(yùn)而生,它們能夠達(dá)到傳統(tǒng)方法的保護(hù)要求,而且從有些方面來看,它們更加可靠。但是器件種類繁多,所以,設(shè)計(jì)人員面臨的最困難的問題就是選擇合適的解決方案。
為了幫助設(shè)計(jì)人員縮小選擇范圍,本文對(duì)傳統(tǒng)保護(hù)方法和ADI保護(hù)產(chǎn)品系列進(jìn)行比較,以展示這些產(chǎn)品和建議應(yīng)用的特性。
簡介
隨著所有行業(yè)中電子器件的使用數(shù)量不斷增加,且成本高昂的FPGA和處理器的處理功能不斷擴(kuò)展,人們?cè)絹碓揭髮?duì)這些在嚴(yán)苛環(huán)境中運(yùn)行的器件提供保護(hù)。此外,還需要它們體積小巧、可靠性高,能夠快速響應(yīng)過壓和過流浪涌事件。本文探討了許多應(yīng)用面臨的挑戰(zhàn),以及為何需要保護(hù),比較了傳統(tǒng)的保護(hù)方法和更新的可替代解決方案,后者具有更高的精度、可靠性和設(shè)計(jì)靈活性。
為何考慮使用電壓和電流保護(hù)器件?
汽車、工業(yè)、通信和航空電子系統(tǒng)需經(jīng)受一系列電源浪涌,例如圖1所示的這些。在這些市場中,許多行業(yè)規(guī)范都對(duì)瞬態(tài)事件進(jìn)行了定義。例如, ISO 7637-2 和 ISO 16750-2 規(guī)范定義了汽車瞬態(tài),詳細(xì)概述了預(yù)期瞬變,以及確保持續(xù)驗(yàn)證這些瞬變的測(cè)試步驟。
浪涌事件的類型和所含能量會(huì)因電子器件的使用區(qū)域而異;電路可能遭受過壓、過流、反向電壓和反向電流等情況。最后,如果要直接經(jīng)受圖1所示的這些瞬變條件,許多電路都無法維持,更不用說獨(dú)立運(yùn)行,所以設(shè)計(jì)人員必須考慮所有輸入情況,并采取可以保護(hù)電路不受電壓和電流浪涌影響的機(jī)制。
圖1.一些更嚴(yán)格的ISO 16750-2測(cè)試的概述。
設(shè)計(jì)挑戰(zhàn)
有很多不同原因會(huì)引發(fā)電子系統(tǒng)中出現(xiàn)瞬變電壓和電流,但有些電子環(huán)境比其他環(huán)境更容易發(fā)生瞬變事件。眾所周知,汽車、工業(yè)和通信環(huán)境中的應(yīng)用會(huì)經(jīng)受有潛在危害的事件,對(duì)下游電子器件造成嚴(yán)重?fù)p壞,但浪涌事件并不只是在這些環(huán)境下發(fā)生。其他可能需要浪涌保護(hù)電路的情況包括:需要高壓或大電流電源的應(yīng)用、采用熱插拔電源連接的應(yīng)用,或者包含電機(jī)或可能受到雷擊感應(yīng)瞬變影響的系統(tǒng)。高壓事件持續(xù)的時(shí)間不等,從幾微秒到幾百毫秒都有可能,所以必須采用靈活可靠的保護(hù)機(jī)制來確保下游成本高昂的電子器件的使用壽命。
例如,當(dāng)交流發(fā)電機(jī)(為電池充電)與電池暫時(shí)斷開時(shí),會(huì)發(fā)生汽車負(fù)載突降。發(fā)生這種斷開后,交流發(fā)電機(jī)提供的滿負(fù)荷充電電流會(huì)傳輸至電源軌,使電源軌電壓在數(shù)百毫秒內(nèi)攀升到極高(>100 V)水平。
有多種原因可能導(dǎo)致通信應(yīng)用發(fā)生浪涌,從熱插拔通信卡到可能受到雷電影響的戶外裝置,涉及多種應(yīng)用。大型設(shè)施中使用的長電纜也可能產(chǎn)生感應(yīng)電壓尖峰。
最終,設(shè)計(jì)人員必須充分了解器件的使用環(huán)境,并滿足既有的規(guī)范要求,這有助于他們組合采用最佳的保護(hù)機(jī)制,可靠且不會(huì)產(chǎn)生干擾,但允許下游電子器件能夠在安全電壓范圍內(nèi)運(yùn)行,且保證最低中斷。
傳統(tǒng)保護(hù)電路
在需要考慮如此多種不同類型的電子問題的情況下,電子工程師應(yīng)如何保護(hù)敏感的下游電子器件?
傳統(tǒng)保護(hù)方法基于多個(gè)器件提供保護(hù),而不是基于一個(gè),例如,采用瞬變電壓抑制器(TVS)提供過壓保護(hù),采用線路保險(xiǎn)絲提供過流保護(hù),采用串聯(lián)二極管提供反向電池/電源保護(hù),以及混合使用電容和電感來過濾更低的電能尖峰。雖然離散配置可以滿足既定的規(guī)范要求(保護(hù)下游電路),但它實(shí)施起來很麻煩,需要進(jìn)行多次選擇來確定合適的濾波規(guī)格。
圖2.傳統(tǒng)保護(hù)器件。
我們來仔細(xì)了解一下這些器件,弄清楚這種實(shí)施方法的優(yōu)點(diǎn)和缺點(diǎn)。
TVS——瞬變電壓抑制器
這是一種相對(duì)簡單的器件,可以保護(hù)下游電路不受電源上的高壓尖峰影響。它們可以分為幾種不同的類型,具有廣泛的特性(表1按響應(yīng)時(shí)間從最短到最長的順序排列)。
表1.不同瞬變電壓抑制器件的響應(yīng)時(shí)間
雖然它們的結(jié)構(gòu)和特性各異,但使用方式是相似的:當(dāng)電壓超過器件閾值時(shí),分流多余的電流。TVS可以在極短時(shí)間內(nèi)將輸出電壓固定在額定水平。例如,TVS二極管的響應(yīng)時(shí)間可以低至皮秒,GDT的響應(yīng)時(shí)間則可能有幾微秒,但可以處理更大的浪涌。
圖3顯示了用于保護(hù)下游電路的TVS二極管的簡單配置。在正常工作條件下,TVS具有高阻抗,輸入電壓會(huì)直接傳輸至輸出。當(dāng)輸入端出現(xiàn)過壓時(shí),TVS開始導(dǎo)電,并將多余的電能分流到接地(GND),從而箝位下游負(fù)載電壓。電源軌電壓升高到典型操作值以上,但被箝位到保證下游電路可以安全運(yùn)行的值。
雖然TVS器件在抑制極高電壓偏移方面很有效,但在遭受持續(xù)過壓時(shí),也不能避免損壞,因此需要定期監(jiān)測(cè)或更換。另一個(gè)擔(dān)心是TVS可能短路,導(dǎo)致輸入電源斷開。此外,根據(jù)涉及的電能大小,它們的尺寸可能需要很大才能滿足裕量要求,導(dǎo)致解決方案的尺寸相應(yīng)增大。即使TVS的尺寸正確,下游電路也必須要能夠處理箝位電壓,對(duì)下游的電壓額定要求也隨之增高。
圖3.用傳統(tǒng)的TVS解決方案保護(hù)電壓浪涌。
線路保險(xiǎn)絲
過流保護(hù)可以使用常見的線路保險(xiǎn)絲實(shí)現(xiàn),其熔斷額定值高于標(biāo)稱值,例如,比最大額定電流高20%(百分比取決于電路類型以及預(yù)期的典型操作負(fù)載)。當(dāng)然,保險(xiǎn)絲最大的問題是一旦燒斷就必須更換。保險(xiǎn)絲設(shè)計(jì)相當(dāng)簡單,但維護(hù)相對(duì)復(fù)雜,特別是在難以接觸的位置,所以后期還是會(huì)耗費(fèi)時(shí)間和成本。使用備用保險(xiǎn)絲(例如可復(fù)位保險(xiǎn)絲)可以減少維護(hù)要求,它會(huì)在高于標(biāo)稱電流的電流流經(jīng)器件時(shí),利用正溫度系數(shù)打開電路(電流增高之后會(huì)令溫度增高,導(dǎo)致電阻急劇升高)。
除維護(hù)問題外,保險(xiǎn)絲最大的問題之一是其反應(yīng)時(shí)間,根據(jù)所選保險(xiǎn)絲的類型,反應(yīng)時(shí)間可能有很大差異。我們可以使用快速熔斷保險(xiǎn)絲,但熔斷時(shí)間(打開電路的時(shí)間)仍然可能需要幾百微秒到毫秒,所以電路設(shè)計(jì)人員必須考慮這些時(shí)間段內(nèi)釋放的電能大小,保證下游電子器件不被損壞。
串聯(lián)二極管
在某些環(huán)境中,電路可能斷開,然后重新連接——例如,在電池供電環(huán)境中。在這種情況下,電源重新連接時(shí)不能保證極性是正確的。我們可以通過在電路的正極供電線上增加一個(gè)串聯(lián)二極管來實(shí)現(xiàn)極性保護(hù)。雖然這種簡單的增加可以有效防止反向極性,但串聯(lián)二極管的壓降會(huì)導(dǎo)致相應(yīng)的功率損耗。在電流相對(duì)較低的電路中,這種取舍很小,但對(duì)于許多現(xiàn)代化的高電流電軌,則需要采用另一種解決方案。圖4是對(duì)圖3的更新,顯示利用TVS和增加的串聯(lián)二極管來防止出現(xiàn)反向極性連接。
圖4.增加串聯(lián)二極管可以防止反向極性連接,但在大電流系統(tǒng)中,二極管的壓降可能是一大問題。
使用電感和電容的濾波器
目前所討論的無源解決方案都是通過限制幅度,但通常只能捕捉更大的幅度,會(huì)放過更小的一些尖峰。這些較小的瞬變?nèi)匀粫?huì)對(duì)下游電路造成損壞,因此需要使用額外的無源濾波器來清潔線路。這可以通過使用離散電感和電容來實(shí)現(xiàn),通過調(diào)整它們的尺寸,讓它們衰減超出頻率范圍的電壓。在設(shè)計(jì)之前,需要對(duì)濾波器設(shè)計(jì)進(jìn)行測(cè)試和測(cè)量,確定它們的尺寸和頻率,然后才能正確確定濾波器的尺寸。這種方法的缺點(diǎn)在于,需要考慮物料成本和面積要求(元器件的板面積和成本要達(dá)到多少才能達(dá)到濾波水平),以及是否需要過度設(shè)計(jì)(確定元器件的公差,以能夠在隨時(shí)間和溫度變化時(shí)提供補(bǔ)償)。
使用浪涌抑制器提供有源保護(hù)
要克服所述的無源保護(hù)解決方案面臨的挑戰(zhàn)和存在的缺點(diǎn),方法之一是轉(zhuǎn)為使用浪涌抑制器IC。浪涌抑制器采用易于使用的控制器IC和串聯(lián)N通道MOSFET,因此無需使用繁雜的分流電路(TVS器件、保險(xiǎn)絲、電感和電容)。因?yàn)橹恍璐_定少數(shù)幾個(gè)元器件的尺寸和讓它們通過質(zhì)量認(rèn)證,所以浪涌抑制器控制器可以極大地簡化系統(tǒng)設(shè)計(jì)。
浪涌抑制器持續(xù)監(jiān)測(cè)輸入電壓和電流。在額定工作條件下,控制器驅(qū)動(dòng)N通道MOSFET通路器件的柵極完全開啟,提供一條從輸入到輸出的低阻抗路徑。在發(fā)生過壓或浪涌時(shí)(閾值由輸出端的反饋網(wǎng)絡(luò)給出),IC調(diào)節(jié)N通道MOSFET的柵極,將MOSFET的輸出電壓箝位到電阻分壓器設(shè)定的電平。
圖5顯示了浪涌抑制器配置的簡化示意圖,以及標(biāo)稱12 V電源軌上出現(xiàn)100 V輸入浪涌時(shí)的結(jié)果。在浪涌發(fā)生期間,浪涌抑制器電路的輸出被箝位到27 V。一些浪涌抑制器也使用串聯(lián)感應(yīng)電阻(圖5中的斷路器)來監(jiān)測(cè)過流情況,并調(diào)整N通道MOSFET的柵極,以限制輸出負(fù)載端的電流。
圖5.浪涌抑制器配置的詳細(xì)示意圖。
根據(jù)對(duì)過壓事件的響應(yīng),可以將浪涌抑制器分為四大類:
● 線性浪涌抑制器
● 柵極箝位
● 開關(guān)浪涌抑制器
● 輸出斷開保護(hù)控制器
浪涌抑制器應(yīng)基于應(yīng)用進(jìn)行選擇,所以,我們來比較一下它們的操作和優(yōu)點(diǎn)。
浪涌抑制器類型:線性
線性浪涌抑制器驅(qū)動(dòng)串聯(lián)MOSFET的方式和線性穩(wěn)壓器比較類似,是將輸出電壓限制在預(yù)先設(shè)置的安全值,并耗散MOSFET中的多余能量。為了保護(hù)MOSFET,該器件通過采用電容故障定時(shí)器來限制在高耗散區(qū)花費(fèi)的時(shí)間。
圖6.LT4363線性浪涌抑制器。
浪涌抑制器類型:柵極箝位
柵極箝位浪涌抑制器利用內(nèi)部或外部箝位(例如,31.5 V或50 V內(nèi)部箝位,或可調(diào)的外部箝位)將柵極引腳的電壓限制到這個(gè)電壓值,然后,由MOSFET的閾值電壓決定輸出電壓限值。例如,在使用內(nèi)部31.5 V柵極箝位,且MOSFET閾值電壓為5 V時(shí),輸出電壓限制為26.5 V?;蛘撸獠繓艠O箝位允許更廣泛的電壓選擇范圍。柵極箝位浪涌抑制器的示例如圖7所示。
圖7.LTC4380柵極箝位浪涌抑制器。
浪涌抑制器類型:開關(guān)
對(duì)于更高功率的應(yīng)用,開關(guān)浪涌抑制器是一個(gè)很好的選擇。與線性和柵極箝位浪涌抑制器一樣,開關(guān)浪涌抑制器在正常操作條件下可以充分增強(qiáng)調(diào)整FET,以在輸入和輸出之間提供一個(gè)低阻路徑(最小化功率損耗)。開關(guān)浪涌抑制器和線性或柵極箝位浪涌抑制器之間的主要區(qū)別出現(xiàn)在檢測(cè)到浪涌事件時(shí)。在浪涌事件中,開關(guān)浪涌抑制器是通過開關(guān)外部MOSFET(比較類似于開關(guān)DC-DC轉(zhuǎn)換器),將輸出調(diào)節(jié)到箝位電壓。
圖8.LTC7860開關(guān)浪涌抑制器。
保護(hù)控制器:輸出斷開
保護(hù)控制器不是真正的浪涌抑制器,但它確實(shí)能停止浪涌。和浪涌抑制器一樣,保護(hù)控制器監(jiān)測(cè)過壓和過流條件,但它不會(huì)箝位或調(diào)節(jié)輸出,而是通過立即斷開輸出來保護(hù)下游電子器件。這種簡單保護(hù)電路的布局緊湊,非常適合由電池供電的便攜式應(yīng)用。 LTC4368 保護(hù)控制器的簡化示意圖,以及它對(duì)過壓事件的響應(yīng)如圖9所示。保護(hù)控制器有許多版本。
圖9.LTC4368保護(hù)控制器。
保護(hù)控制器會(huì)監(jiān)測(cè)輸入電壓,確保電壓保持在OV/UV引腳的電阻分壓器所配置的電壓范圍內(nèi),當(dāng)輸入電壓超過這個(gè)范圍時(shí),利用背對(duì)背MOSFET斷開輸出,如圖9所示。背對(duì)背MOSFET也可用于防止反向輸入。輸出端的感應(yīng)電阻通過持續(xù)監(jiān)測(cè)正向電流來實(shí)現(xiàn)過流保護(hù),但不需要基于計(jì)時(shí)器的穿越操作。
浪涌抑制器特性
為了給您的應(yīng)用選擇最合適的浪涌抑制器,您需要知道有哪些可用特性,以及它們可以幫助解決哪些挑戰(zhàn)。您可以在參數(shù)表中查找這些器件。
斷開與穿越
一些應(yīng)用要求在檢測(cè)到浪涌事件時(shí)斷開輸出和輸入的連接。在這種情況下,需要斷開過壓連接。如果您需要輸出在浪涌事件發(fā)生時(shí)保持正常運(yùn)行,從而最大限度減少下游電子設(shè)備的停機(jī)時(shí)間,則需要浪涌抑制器在發(fā)生浪涌時(shí)進(jìn)行穿越。在這種情況下,使用線性或開關(guān)浪涌抑制器可以實(shí)現(xiàn)這一功能(前提是,對(duì)于拓?fù)浜退x的FET,功率電平是合理的)。
故障定時(shí)器
實(shí)施穿越時(shí),需要對(duì)MOSFET提供保護(hù),以防它受到持續(xù)浪涌影響。為了確保留在FET的安全工作區(qū)(SOA)內(nèi),可以使用定時(shí)器。定時(shí)器本質(zhì)上是一個(gè)接地電容。發(fā)生過壓時(shí),內(nèi)部電流源開始為這個(gè)外部電容充電。電容達(dá)到一定的閾值電壓時(shí),數(shù)字故障引腳拉低,表明受時(shí)間延長的過壓影響,調(diào)整管將很快關(guān)閉。如果定時(shí)器引腳電壓繼續(xù)上升到二級(jí)閾值,柵極引腳將拉低,以關(guān)閉MOSFET。
定時(shí)器電壓的變化率隨通過MOSFET的電壓而變化,也就是說,電壓越大,時(shí)間越短,電壓越小,時(shí)間越長。這個(gè)有用特性使器件能夠平穩(wěn)度過短時(shí)過壓事件,允許下游元器件保持運(yùn)行,同時(shí)保護(hù)MOSFET不因持續(xù)時(shí)間更長的過壓事件出現(xiàn)損壞。有些器件具有重試功能,使器件能在冷卻之后再次打開輸出。
過流保護(hù)
許多浪涌抑制器都能夠監(jiān)測(cè)電流和保護(hù)器件不受過流事件影響。這是通過監(jiān)測(cè)串聯(lián)感應(yīng)電阻上的壓降并作出適當(dāng)響應(yīng)來實(shí)現(xiàn)的。也可以通過監(jiān)測(cè)和控制浪涌電流來保護(hù)MOSFET。其響應(yīng)可能與過壓情況類似,這是因?yàn)槿绻娐纺軌蚪邮苓@種功率電平,那么它要么通過閂鎖斷開,要么通過穿越事件來斷開。
反向輸入保護(hù)
浪涌抑制器具有廣泛的操作能力(能夠承受某些器件上高達(dá)60 V的地下電壓),所以能夠提供反向輸入保護(hù)。圖10顯示了提供反向電流保護(hù)的背對(duì)背MOSFET配置。在正常運(yùn)行期間,Q2和Q1由柵極引腳開啟,Q3不產(chǎn)生任何影響。但是,出現(xiàn)反向電壓連接時(shí),Q3開啟,將Q2的柵極下拉至負(fù)輸入并隔離Q1,以保護(hù)輸出。
也可以通過可靠的器件引腳保護(hù)來實(shí)現(xiàn)反向輸出電壓保護(hù),根據(jù)所選的器件,可以承受高達(dá)20 V的地下電壓。
圖10.LT4363反向輸入保護(hù)電路。
對(duì)于需要寬輸入電壓范圍的應(yīng)用,可以使用浮動(dòng)拓?fù)淅擞恳种破鳌0l(fā)生浪涌事件時(shí),浪涌抑制器IC會(huì)監(jiān)控整個(gè)浪涌電壓,由內(nèi)部晶體管技術(shù)限制IC的電壓范圍。使用浮動(dòng)浪涌抑制器(例如 LTC4366)時(shí),IC浮動(dòng)剛好低于輸出電壓,為其提供更廣泛的工作電壓范圍。返回線中包含一個(gè)電阻(VSS),允許IC隨電源電壓浮動(dòng)。如此,由外部元器件和MOSFET的電壓功能設(shè)置輸入電壓限值。圖11顯示的應(yīng)用電路可以在保護(hù)后端負(fù)載時(shí),使用極高的直流電源正常運(yùn)行。
圖11.LTC4366高壓浮動(dòng)拓?fù)洹?/div>
為我的應(yīng)用選擇正確的器件
由于浪涌抑制器本身采用可靠設(shè)計(jì),所以能從很多方面簡化保護(hù)電路的設(shè)計(jì)。數(shù)據(jù)手冊(cè)已顯示許多可能的應(yīng)用,在確定元器件尺寸時(shí),能夠提供很大幫助。最困難的部分可能是選擇最合適的器件。您可以遵循以下幾個(gè)步驟來縮小范圍:
● 訪問ADI的保護(hù)器件系列 參數(shù)表。
● 選擇輸入電壓范圍。
● 選擇通道數(shù)量。
● 篩選功能,縮小可行選項(xiàng)的范圍。
和所有產(chǎn)品選型一樣,在查找正確的器件前,您需要了解您的系統(tǒng)要求,這點(diǎn)非常重要。一些重要的考慮因素包括:預(yù)期的電源電壓和下游電子器件的電壓容限(在決定箝位電壓時(shí)非常重要),以及對(duì)設(shè)計(jì)而言非常重要的一些特性。
以下是一些經(jīng)過篩選的參數(shù)表示例,供大家參考。大家可以訪問網(wǎng)站,在網(wǎng)站上進(jìn)一步更改這些參數(shù)表,可以添加一些其他參數(shù)。
● 高壓浪涌抑制器器件請(qǐng)參見 這里。
● 具有過壓斷開功能的保護(hù)控制器請(qǐng)參見 這里。
結(jié)論
無論采用哪種類型的浪涌抑制器,基于IC的有源浪涌抑制器設(shè)計(jì)都無需使用繁雜的TVS二極管,或使用大尺寸電感和電容來進(jìn)行濾波。所以,解決方案的整體面積更小,體積也更小巧。相比TVS,其輸出電壓箝位精度可能高出1%至2%。如此可以防止過度設(shè)計(jì),且能夠選擇公差更嚴(yán)格的下游器件。
ADI提供的系統(tǒng)保護(hù)器件系列讓設(shè)計(jì)人員能夠采用可靠、靈活且小巧的解決方案為下游器件提供保護(hù),尤其是對(duì)于工業(yè)、汽車、航空航天和通信設(shè)計(jì)中可能面臨嚴(yán)苛的過壓和過流事件的器件。
參考資料
"AN-9768:瞬變抑制器件和原則." Littelfuse,1998年1月。
"Fuseology." 乘用車解決方案目錄,Littelfuse,2014年。
Kalb, Jim。 "總?cè)蹟鄷r(shí)間" 技術(shù)簡報(bào),OptiFuse,2010年1月。
Megaw, David。 "為汽車電子系統(tǒng)提供供電和保護(hù),無開關(guān)噪聲,效率高達(dá)99.9%." 模擬對(duì)話,第54卷第1期,2020年2月。
Wu, Bin and Zhongming Ye。 "用于惡劣汽車環(huán)境的全面電源系統(tǒng)設(shè)計(jì)占用空間極小,可節(jié)約電池電量且具有低EMI特性." 模擬對(duì)話,第53卷第3期,2019年8月。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測(cè)試庫獲得德國萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長的IO-Link市場
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 讓汽車LED照明無死角,LED驅(qū)動(dòng)的全面進(jìn)化
- 開關(guān)模式電源問題分析及其糾正措施:晶體管時(shí)序和自舉電容問題
- 熱電偶的測(cè)溫原理
- 【泰克先進(jìn)半導(dǎo)體實(shí)驗(yàn)室】 遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
- ADALM2000實(shí)驗(yàn):變壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器
電源風(fēng)扇
電源管理
電源管理IC
電源連接器
電源濾波器
電源模塊
電源模塊
電源適配器
電子書
電阻測(cè)試儀
電阻觸控屏
電阻器
電阻作用
調(diào)速開關(guān)
調(diào)諧器
鼎智
動(dòng)力電池
動(dòng)力控制
獨(dú)石電容
端子機(jī)
斷路器
斷路器型號(hào)