MLCC在EV無(wú)線充電系統(tǒng)中的應(yīng)用指南
發(fā)布時(shí)間:2019-03-19 責(zé)任編輯:xueqi
【導(dǎo)讀】TDK的C0G特性MLCC具備尺寸小的特點(diǎn),同時(shí)因其溫度特性優(yōu)異,作為移動(dòng)設(shè)備的無(wú)線充電諧振用電容器得到廣泛使用。以下就將C0G特性·高耐壓MLCC的特點(diǎn),以及在EV無(wú)線充電系統(tǒng)中替換薄膜電容器及其優(yōu)點(diǎn)為中心進(jìn)行說(shuō)明。
前言
隨著材料技術(shù)與積層技術(shù)的不斷精進(jìn),在進(jìn)一步實(shí)現(xiàn)MLCC(積層陶瓷貼片電容器)小型化及大容量化的趨勢(shì)中,近年來(lái),溫度補(bǔ)償用(種類1)MLCC的耐電壓與電容量的擴(kuò)大也得到了顯著發(fā)展。
由TDK開發(fā)的C0G特性·高耐壓MLCC是一款通過(guò)C0G特性,在行業(yè)最高等級(jí)的廣電容量范圍(1nF~33nF)內(nèi)實(shí)現(xiàn)了1000V耐電壓的產(chǎn)品。在諧振電路等用途中,以往使用薄膜電容器的領(lǐng)域中也逐漸被MLCC所取代。
以下就將該C0G特性·高耐壓MLCC的特點(diǎn),以及在EV無(wú)線充電系統(tǒng)中替換薄膜電容器及其優(yōu)點(diǎn)為中心進(jìn)行說(shuō)明。
替換為MLCC的事例:EV無(wú)線充電系統(tǒng)
無(wú)線充電在包括智能手機(jī)在內(nèi)的各類移動(dòng)設(shè)備中得到廣泛普及。TDK的C0G特性MLCC具備尺寸小的特點(diǎn),同時(shí)因其溫度特性優(yōu)異,作為移動(dòng)設(shè)備的無(wú)線充電諧振用電容器得到廣泛使用。而另一方面,TDK的EV(電動(dòng)車)無(wú)線充電技術(shù)開發(fā)也在不斷發(fā)展。
從環(huán)境問(wèn)題與油耗角度來(lái)看,世界各國(guó)的大型汽車生產(chǎn)商正聚焦于環(huán)保汽車中最被重視的EV,并開發(fā)出了各種車型。而充電設(shè)備等基礎(chǔ)設(shè)施的完善以及續(xù)航距離的延長(zhǎng)正是EV得到普及所不可或缺的一項(xiàng)因素。充電基礎(chǔ)設(shè)施方面,雖然在高速公路的服務(wù)區(qū)/停車區(qū)、機(jī)場(chǎng)、購(gòu)物廣場(chǎng)等停車場(chǎng)等場(chǎng)所增加設(shè)置了充電樁,但今后作為充電基礎(chǔ)設(shè)施而頗受期待的則是可進(jìn)行無(wú)線非接觸式充電的無(wú)線充電系統(tǒng)。同時(shí),無(wú)線充電在自動(dòng)駕駛實(shí)用化階段中是不可或缺的一項(xiàng)技術(shù)。
TDK在開發(fā)為移動(dòng)設(shè)備內(nèi)置電池充電的電磁感應(yīng)式無(wú)線充電方式的同時(shí),還走在近年來(lái)頗受關(guān)注的磁共振式無(wú)線充電技術(shù)開發(fā)的前列,并且至今為止在自動(dòng)導(dǎo)引運(yùn)輸車(AGV)及電梯等產(chǎn)業(yè)設(shè)備領(lǐng)域中滿足著客戶的使用需求。此處介紹的EV無(wú)線充電也是采用了TDK磁性體技術(shù)及介電質(zhì)技術(shù)等的先進(jìn)磁共振式系統(tǒng)。
磁共振式無(wú)線充電的原理以及特點(diǎn)
得到廣泛運(yùn)用的電磁感應(yīng)式無(wú)線充電系統(tǒng)與切斷變壓器鐵芯,并設(shè)置空隙的結(jié)構(gòu)相同。該方式的優(yōu)點(diǎn)在于成本低,但當(dāng)輸電/受電線圈間隔增大時(shí),傳輸效率會(huì)大幅降低。隨著線圈距離的增加,部分磁通會(huì)變?yōu)槁┐磐?,從而?huì)使線圈間的磁耦合減弱。而該磁耦合程度則以耦合系數(shù)(k)表示。耦合系數(shù)是在0≦k≦1范圍內(nèi)的值,在沒有漏磁通的理想情況下為1,線圈間隔越大,或線圈偏離中心位置越遠(yuǎn),則漏磁通會(huì)越多,從而導(dǎo)致耦合系數(shù)下降,最終將會(huì)變?yōu)?。而磁共振式無(wú)線充電則是為克服該難點(diǎn)而誕生的全新方式。
磁共振式是在輸電側(cè)與受電側(cè)分別插入電容器,形成LC諧振電路,并使輸電側(cè)與受電側(cè)諧振頻率一致,從而進(jìn)行電力傳輸?shù)姆绞健F涮攸c(diǎn)在于即使線圈間的距離多少會(huì)出現(xiàn)擴(kuò)大,或偏離中心位置的情況等在耦合系數(shù)較低的狀態(tài)下也能實(shí)現(xiàn)高傳輸效率。其基本原理如圖1所示。
圖1:磁共振式無(wú)線充電的基本原理
在通過(guò)磁共振無(wú)線充電的EV充電系統(tǒng)中,高電力用諧振電容器是其重要元件之一。這是因?yàn)樵诙虝r(shí)間內(nèi)通過(guò)無(wú)線方式高效供應(yīng)大電力,要求在高耐電壓狀態(tài)下保持高精度的諧振電路。
而薄膜電容器則是能夠滿足這一要求的強(qiáng)有力產(chǎn)品。但為了延長(zhǎng)續(xù)航距離及確保車內(nèi)空間,EV要求實(shí)現(xiàn)進(jìn)一步小型及輕量化,在此之中,替換為能夠?qū)崿F(xiàn)節(jié)約電路空間的C0G特性MLCC則能夠帶來(lái)巨大優(yōu)勢(shì)。以往幾乎沒有在C0G特性下實(shí)現(xiàn)1000V耐電壓的產(chǎn)品,但通過(guò)TDK新開發(fā)的C0G特性·高耐壓MLCC則可有效進(jìn)行替換。
通過(guò)替換C0G特性、1000V、MLCC,實(shí)現(xiàn)更為小型、輕量化的產(chǎn)品
圖2所示為通過(guò)磁共振式無(wú)線充電為EV電池進(jìn)行充電的示意圖,以及受電側(cè)諧振電容器尺寸的比較示例。
圖2:通過(guò)磁共振式無(wú)線充電為EV電池進(jìn)行充電以及受電用諧振電容器尺寸比較示例(示意圖)
將滿足電容量20nF、AC2kVrms規(guī)格的薄膜電容器替換為串聯(lián)及并聯(lián)的多個(gè)TDK的C0G特性MLCC時(shí),以往630V的C0G特性MLCC中需要180個(gè)。即便如此,也大幅實(shí)現(xiàn)了小型化,但如果替換為新開發(fā)的1000V的C0G特性MLCC,則單純計(jì)算后可以只需使用80個(gè),因此可進(jìn)一步節(jié)約空間以及削減數(shù)量。
通過(guò)極低的ESR可大幅削減使用的MLCC數(shù)量能
圖3是以往產(chǎn)品C0G特性·630V·MLCC與新開發(fā)的C0G特性·1000V·MLCC阻抗-頻率特性以及ESR-頻率特性的比較。
圖3:630V·MLCC與1000V·MLCC的阻抗-頻率特性以及ESR-頻率特性的比較
1000V·MLCC的ESR相比630V·MLCC降低了50%。額定電壓從630V到1000V時(shí),1個(gè)MLCC中流經(jīng)的電流值將增加至大約1.5倍,但當(dāng)ESR值與以往MLCC相同時(shí),則因發(fā)熱導(dǎo)致壽命劣化的危險(xiǎn)性將會(huì)提高。
新開發(fā)的C0G特性·1000V·MLCC的ESR為50%,達(dá)到了極低的水平,因此在圖2的替換示例中,可從180個(gè)到80個(gè),實(shí)現(xiàn)大幅削減。需要注意的是,將其他電容器替換為MLCC時(shí),ESR值同樣也是十分重要的因素。
車載等級(jí)MLCC(積層陶瓷貼片電容器)CGA系列C0G特性/NP0特性
TDK提供車載等級(jí)及CGA系列的中耐壓MLCC(額定電壓100~630V)、高耐壓MLCC(額定電壓1000V以上)等各類MLCC。其中,額定電壓為1000V、溫度特性為C0G特性/NP0特性、電容量為1nF~33nF的產(chǎn)品擁有以下類型。除了磁共振式無(wú)線充電共振電容器之外,在時(shí)間常數(shù)電路、濾波器電路、振蕩電路等在有高精度的要求時(shí),需要實(shí)現(xiàn)小型化和SMT化的情況下可以用于替換薄膜電容。同時(shí),為了進(jìn)一步提高可靠性,對(duì)于基板彎曲導(dǎo)致的元件體開裂、熱沖擊導(dǎo)致的焊錫開裂以及振動(dòng)等外部環(huán)境因素具有較強(qiáng)耐受性的金屬支架電容及樹脂電極品系列也一應(yīng)俱全。
EV及自動(dòng)駕駛等新一代汽車的發(fā)展關(guān)鍵在于對(duì)電池進(jìn)行高效充電的無(wú)線充電技術(shù)。在磁共振式無(wú)線充電中,諧振電容器的特性與電力傳輸效率息息相關(guān)。實(shí)現(xiàn)耐電壓1000V的TDK的C0G特性·高耐壓MLCC是作為EV無(wú)線充電中的諧振電容器,具備最佳特性的溫度補(bǔ)償用(種類1)MLCC。同時(shí),由于ESR極低,這也是C0G特性·高耐壓MLCC所不可忽視的重要因素。TDK將通過(guò)擴(kuò)大耐電壓及電容量范圍等方式,進(jìn)一步豐富產(chǎn)品線。
* C0G:–55~+125°C中溫度系數(shù)在0±30ppm/°C以內(nèi)
** NP0:–55~+150°C中溫度系數(shù)在0±30ppm/°C以內(nèi)
特別推薦
- 車用開關(guān)電源的開關(guān)頻率定多高才不影響EMC?
- 大聯(lián)大世平集團(tuán)的駕駛員監(jiān)控系統(tǒng)(DMS)方案榮獲第六屆“金輯獎(jiǎng)之最佳技術(shù)實(shí)踐應(yīng)用”獎(jiǎng)
- 貿(mào)澤推出針對(duì)基礎(chǔ)設(shè)施和智慧城市的工程技術(shù)資源中心
- 貿(mào)澤電子開售用于IoT、智能和工業(yè)應(yīng)用的Siemens LOGO! 8.4云邏輯模塊
- 英飛凌推出全球最薄硅功率晶圓,突破技術(shù)極限并提高能效
- 東芝推出面向多種車載應(yīng)用3相直流無(wú)刷電機(jī)的新款柵極驅(qū)動(dòng)IC
- 村田開發(fā)兼顧伸縮性和可靠性的“可伸縮電路板”
技術(shù)文章更多>>
- 遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
- Kvaser發(fā)布全新軟件CanKing 7:便捷CAN總線診斷與分析!
- 6秒速測(cè)!瑞典森爾(Senseair)高精度酒精檢測(cè)儀,守護(hù)公路貨運(yùn)安全,嚴(yán)防酒駕醉駕
- APSME 2025 亞洲國(guó)際功率半導(dǎo)體、材料及裝備技術(shù)展覽會(huì)
- 汽車電子展︱AUTO TECH 2025 廣州國(guó)際汽車電子技術(shù)展覽會(huì)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
ZigBee Pro
安規(guī)電容
按鈕開關(guān)
白色家電
保護(hù)器件
保險(xiǎn)絲管
北斗定位
北高智
貝能科技
背板連接器
背光器件
編碼器型號(hào)
便攜產(chǎn)品
便攜醫(yī)療
變?nèi)荻O管
變壓器
檳城電子
并網(wǎng)
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測(cè)力傳感器
測(cè)試測(cè)量
測(cè)試設(shè)備
拆解