-
意法半導(dǎo)體1600V IGBT新品發(fā)布:精準(zhǔn)適配大功率節(jié)能家電需求
針對(duì)高性價(jià)比節(jié)能家電市場(chǎng)對(duì)高效、可靠功率器件的迫切需求,意法半導(dǎo)體近日推出STGWA30IH160DF2 IGBT,該產(chǎn)品以1600V額定擊穿電壓為核心,融合優(yōu)異熱性能與軟開(kāi)關(guān)拓?fù)涓咝н\(yùn)行特性,專為電磁爐、微波爐、電飯煲等大功率家電設(shè)計(jì),尤其適配需并聯(lián)使用的場(chǎng)景,助力家電產(chǎn)品在節(jié)能與性能間實(shí)現(xiàn)平衡。
2025-07-16
-
驅(qū)動(dòng)器技術(shù)全景圖:從原理到國(guó)產(chǎn)替代的破局之路
驅(qū)動(dòng)器作為電子系統(tǒng)中的能量調(diào)度中樞,通過(guò)將微控制器的低功率信號(hào)轉(zhuǎn)換為高功率驅(qū)動(dòng)信號(hào),實(shí)現(xiàn)對(duì)電機(jī)、功率器件、LED等負(fù)載的精確控制。其核心價(jià)值在于解決控制單元與執(zhí)行單元間的能量鴻溝——在保障電氣安全隔離的同時(shí),提升能效與可靠性。隨著工業(yè)4.0與電動(dòng)汽車的爆發(fā)式增長(zhǎng),驅(qū)動(dòng)器技術(shù)正經(jīng)歷從“單一功能”向“智能集成”的范式躍遷。
2025-07-08
-
從實(shí)驗(yàn)室到市場(chǎng):碳化硅功率器件如何突破可靠性瓶頸
從 MOSFET 、二極管到功率模塊,功率半導(dǎo)體產(chǎn)品是我們生活中無(wú)數(shù)電子設(shè)備的核心。 從醫(yī)療設(shè)備和可再生能源基礎(chǔ)設(shè)施,到個(gè)人電子產(chǎn)品和電動(dòng)汽車 (EV),它們的性能和可靠性確保了各種設(shè)備的持續(xù)運(yùn)行。
2025-05-16
-
功率器件新突破!氮化鎵實(shí)現(xiàn)單片集成雙向開(kāi)關(guān)
氮化鎵(GaN)單片雙向開(kāi)關(guān)正重新定義功率器件的電流控制范式。 傳統(tǒng)功率器件(如MOSFET或IGBT)僅支持單向主動(dòng)導(dǎo)通,反向電流需依賴體二極管或外接抗并聯(lián)二極管實(shí)現(xiàn)第三象限傳導(dǎo)。這種被動(dòng)式反向?qū)ú粌H缺乏門極控制能力,更因二極管壓降導(dǎo)致效率損失。為實(shí)現(xiàn)雙向可控傳導(dǎo),工程師常采用背對(duì)背(B2B)拓?fù)浼?jí)聯(lián)兩個(gè)器件,卻因此犧牲了功率密度并增加了系統(tǒng)復(fù)雜度。
2025-05-11
-
迎刃而解——華大九天Polas利器應(yīng)對(duì)功率設(shè)計(jì)挑戰(zhàn)
電源管理集成電路(PMIC)設(shè)計(jì)涉及電源轉(zhuǎn)換、電壓調(diào)節(jié)、電流管理等核心領(lǐng)域。隨著技術(shù)節(jié)點(diǎn)的演進(jìn),功率器件面臨著更大的電壓差、更高的電流密度以及更為嚴(yán)苛的功率/熱耗散要求;金屬互聯(lián)層的電阻在整體導(dǎo)通電阻中的占比越來(lái)越大;異形大金屬圖層以及功率器件拆分方式對(duì)參數(shù)提取的準(zhǔn)確性造成了影響;封裝對(duì)芯片內(nèi)電氣特性的影響亦愈發(fā)顯著。這些因素共同對(duì)功率設(shè)計(jì)在電遷移(EM)、熱性能(Thermal)和導(dǎo)通電阻(RDSon)等可靠性方面帶來(lái)了新的挑戰(zhàn)。此外,如何高效地驅(qū)動(dòng)具有較大有效柵極寬度的PowerMOS,以及如何防止上下管開(kāi)關(guān)切換過(guò)程中的穿通漏電現(xiàn)象,也成為功率設(shè)計(jì)領(lǐng)域的核心難題。
2025-02-13
-
使用MSO 5/6內(nèi)置AWG進(jìn)行功率半導(dǎo)體器件的雙脈沖測(cè)試
SiC器件的快速開(kāi)關(guān)特性包括高頻率,要求測(cè)量信號(hào)的精度至少達(dá)到100MHz或更高帶寬 (BW),這需要使用額定500MHz或更高頻率的示波器和探頭。在本文中,寬禁帶功率器件供應(yīng)商Qorvo與Tektronix合作,基于實(shí)際的SiC被測(cè)器件 (DUT),描述了實(shí)用的解決方案。
2025-01-26
-
功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2025-01-24
-
功率器件熱設(shè)計(jì)基礎(chǔ)(十二)——功率半導(dǎo)體器件的PCB設(shè)計(jì)
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2025-01-14
-
功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
在功率器件的熱設(shè)計(jì)基礎(chǔ)系列文章《功率半導(dǎo)體殼溫和散熱器溫度定義和測(cè)試方法》和《功率半導(dǎo)體芯片溫度和測(cè)試方法》分別講了功率半導(dǎo)體結(jié)溫、芯片溫度、殼溫和散熱器溫度的測(cè)試方法,用的測(cè)溫儀器是熱電偶、紅外成像儀和模塊中的NTC和芯片上的二極管。
2024-12-31
-
功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
功率半導(dǎo)體熱設(shè)計(jì)是實(shí)現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計(jì)基礎(chǔ)知識(shí),才能完成精確熱設(shè)計(jì),提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
2024-12-25
-
功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
任何導(dǎo)熱材料都有熱阻,而且熱阻與材料面積成反比,與厚度成正比。按道理說(shuō),銅基板也會(huì)有額外的熱阻,那為什么實(shí)際情況是有銅基板的模塊散熱更好呢?這是因?yàn)闊岬臋M向擴(kuò)散帶來(lái)的好處。
2024-12-22
-
功率器件熱設(shè)計(jì)基礎(chǔ)(七)——熱等效模型
有了熱阻熱容的概念,自然就會(huì)想到在導(dǎo)熱材料串并聯(lián)時(shí),就可以用阻容網(wǎng)絡(luò)來(lái)描述。一個(gè)帶銅基板的模塊有7層材料構(gòu)成,各層都有一定的熱阻和熱容,哪怕是散熱器,其本身也有熱阻和熱容。整個(gè)散熱通路還包括導(dǎo)熱脂、散熱器和環(huán)境。不同時(shí)間尺度下的各層溫度如下圖,溫度的紋波是由熱容決定的。
2024-12-11
- 差分振蕩器設(shè)計(jì)的進(jìn)階之路:性能瓶頸突破秘籍
- 多相并聯(lián)反激式轉(zhuǎn)換器:突破百瓦極限的EMI優(yōu)化設(shè)計(jì)
- 告別拓?fù)渫讌f(xié)!四開(kāi)關(guān)μModule穩(wěn)壓器在車載電源的實(shí)戰(zhàn)演繹
- 國(guó)產(chǎn)替代加速!工字型電感頭部原廠性能成本終極對(duì)決
- 比LDO更安靜!新一代開(kāi)關(guān)穩(wěn)壓器解鎖高速ADC全性能
- 貿(mào)澤推出EIT系列重塑AI與人類智慧工程設(shè)計(jì)協(xié)同創(chuàng)新新范式
- 汽車電子的“心臟穩(wěn)定器”:車規(guī)片狀電感應(yīng)用全景解析
- 智造領(lǐng)袖聚深!WAIE2025數(shù)字化轉(zhuǎn)型大會(huì)關(guān)鍵議題前瞻
- 2025深圳智能工業(yè)展倒計(jì)時(shí):華為、大族、富士康等名企齊聚(附超全參觀攻略)
- 貿(mào)澤電子擴(kuò)展嵌入式AI硬件陣營(yíng):多款專用處理器與加速器新品上線
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall