一種毫米波CMOS射頻芯片偶極天線
發(fā)布時(shí)間:2017-07-25 責(zé)任編輯:wenwei
【導(dǎo)讀】本文討論了一種帶有集成微帶過孔不平衡-平衡器,60GHz毫米波CMOS射頻芯片嵌入式偶極子天線的設(shè)計(jì),制造和晶圓上測(cè)量。這是為了利用集成低成本單 片集成CMOS射頻前端電路的天線為60GHz無(wú)線電實(shí)現(xiàn)一種射頻芯片嵌入式系統(tǒng)(SoC)。
無(wú)線網(wǎng)絡(luò)不斷增長(zhǎng)的容量,對(duì)寬帶多媒體組件的需求不斷增加。特別是對(duì)于密集的本地通信來(lái)說,指定給無(wú)線個(gè)人網(wǎng)絡(luò)(WPAN)的60GHz頻帶對(duì)于短距通信 具有特殊意義。這是因?yàn)樵谝?0GHz為中心頻率的8GHz帶寬內(nèi)由大氣中的氧氣引起的射頻衰減為10到15dB/km。這使60GHz頻段對(duì)于所有類型 的短距無(wú)線通信具有最重大的意義。為了在60GHz無(wú)線電中使用射頻芯片嵌入式系統(tǒng)(SoC)方式,研究了整合低成本單片集成CMOS射頻前端電路的天線。
本文提出了一種60GHz CMOS射頻芯片嵌入式偶極子天線。在這種射頻芯片嵌入式天線的設(shè)計(jì)中采用了帶有集成微帶過孔不平衡-平衡器的平面偶極子天線結(jié)構(gòu)。設(shè)計(jì)仿真中使用了一種 基于FEM的3-D全波EM solver—Ansoft公司的HFSS。天線芯片使用0.18微米CMOS工藝制造。所設(shè)計(jì)的射頻芯片嵌入式天線的輸入VSWR和天線增益晶圓上測(cè)量 使用微波探針臺(tái)實(shí)行。
天線設(shè)計(jì)
圖1給出了所提的平面印制偶極子天線。微帶過孔不平衡-平衡器用作饋電同軸線和兩個(gè)印制偶極子帶之間的不平衡-平衡轉(zhuǎn)換器。偶極子帶的長(zhǎng)度約為1/4波 長(zhǎng)。微帶線和偶極子帶的接地面在同一個(gè)面。就像圖中指出的那樣,過孔允許一個(gè)印制偶極子帶的饋電信號(hào)(點(diǎn)2)與另一個(gè)印制偶極子帶的饋電信號(hào)(點(diǎn)1)擁有 相同的相位。因?yàn)轫攲訉?dǎo)體與微帶線的接地面存在180°相差,印制偶極子帶點(diǎn)2的饋電信號(hào)會(huì)與點(diǎn)1的另一個(gè)饋電信號(hào)之間存在180°相差。偶極子臂帶寬度 選取為約等于波長(zhǎng)的十分之一。微帶饋線寬面的特征阻抗設(shè)計(jì)為50 Ω。印制偶極子和集成過孔不平衡-平衡器每個(gè)部分的尺寸必須經(jīng)過精確的數(shù)值計(jì)算以獲得所需的印制天線性能。圖2給出了所設(shè)計(jì)的60GHz射頻芯片嵌入式偶 極子天線的0.18微米CMOS工藝制成芯片布線與切面圖。
仿真與測(cè)試結(jié)論
圖3給出了HFSS仿真的天線電流分布。頂面和底面金屬上的仿真電流密度矢量明顯表示出了平衡電流分布和兩個(gè)印制偶極子饋電點(diǎn)上電流流動(dòng)矢量180°相位 差。這展示了集成微帶不平衡-平衡器的作用。圖4給出了一個(gè)制成60GHz CMOS射頻芯片嵌入式天線的芯片顯微圖。芯片尺寸為0.75 × 0.66mm,基底厚度約為500mm。圖5給出了天線輸入VSWR晶圓上測(cè)量值,其在55到65GHz內(nèi)小于3。圖6和表1給出了60GHz天線仿真輻 射圖樣與H平面、E平面功率增益值。注意到,天線功率增益(絕對(duì)增益)Gp定義為:
圖1 帶有集成過孔不平衡-平衡器的平面耦極子天線
圖2 60GHzCMOS射頻芯片嵌入式天線芯片布線(a)和截面圖(b)
圖3 HFSS仿真圖與仿真天線電流分布
圖4 芯片顯微圖
圖5 仿真和實(shí)測(cè)天線輸入VSWR
表1 60GHz仿真天線功率增益*
圖6 60GHz H平面E平面仿真天線輻射圖樣
仿真天線輻射效率近似為百分之16。這可能是CMOS基底損耗造成的。H平面圖樣除了在某個(gè)特定方向存在一些衰減之外近似為全向圖樣。H平面仿真最大,最 小和平均增益分別近似為-9,-16和-11dBi。用Simons和Lee描述的技術(shù)測(cè)得晶圓上測(cè)量天線絕對(duì)功率增益。如圖7所示,兩個(gè)相同的射頻芯片 嵌入式天線面對(duì)面距離R放置。其中一個(gè)天線為發(fā)射天線,而另一個(gè)為接收天線。分隔兩相同天線的距離R應(yīng)滿足遠(yuǎn)場(chǎng)條件,即大于等于
這里D和λ0分別為射頻芯片嵌入式天線最大孔徑與工作頻率自由空間波長(zhǎng)。從Friis的功率傳輸公式得知,最大功率天線增益(在偶極子天線的中心前向上)由下式給出:
這里
Gt和Gr =發(fā)送和接收天線增益
Pt =發(fā)送功率
Pr =接收功率
同樣,因?yàn)閮商炀€相同,Gr= Gt=G。功率比Pr/Pt為由VNA得來(lái)的實(shí)測(cè)直接傳輸系數(shù)|S21|2。圖8給出了晶片上測(cè)量設(shè)置的探針臺(tái)顯微圖。60GHz實(shí)測(cè)最大天線功率增益約為-10dBi。這與仿真結(jié)論完美一致。表2給出了天線輻射特征的性能總結(jié)。
圖7 射頻芯片嵌入式天線晶片上測(cè)試的配置圖示
結(jié)論
本文討論了一種帶有集成微帶過孔不平衡-平衡器,60GHz毫米波CMOS射頻芯片嵌入式偶極子天線的設(shè)計(jì),制造和晶圓上測(cè)量。這是為了利用集成低成本單 片集成CMOS射頻前端電路的天線為60GHz無(wú)線電實(shí)現(xiàn)一種射頻芯片嵌入式系統(tǒng)(SoC)。天線芯片使用0.18微米CMOS工藝制造,芯片尺寸為 0.75 × 0.66 mm。
使用了基于FEM的一種3D全波EM solver—HFSS進(jìn)行設(shè)計(jì)仿真。對(duì)輸入VSWR和射頻芯片嵌入式天線的最大天線功率增益做了晶圓上測(cè)量。實(shí)測(cè)天線VSWR在55到65GHz之間小 于3。實(shí)測(cè)H平面輻射圖樣近似為全向圖樣,而且仿真天線輻射效率近似為16。這可能是CMOS基底損耗引起的。60GHz處實(shí)測(cè)天線功率增益約為 -10dBi,這與仿真結(jié)果很好地一致。今后將會(huì)獲得所設(shè)計(jì)的帶有60GHz CMOS射頻前端電路的60GHz射頻芯片嵌入式天線的集成產(chǎn)品。
表2 帶過孔不平衡-平衡器的60GHz CMOS射頻芯片嵌入式偶極子天線性能總結(jié)
圖8 探針臺(tái)晶圓測(cè)試設(shè)置
(來(lái)源:射頻百花潭)
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 模擬信號(hào)鏈的設(shè)計(jì)注意事項(xiàng)
- 熱烈祝賀 Andrew MENG 晉升為 ASEAN(東盟)市場(chǎng)經(jīng)理!
- 邁向更綠色的未來(lái):GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索